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ABSTRACT: A structural analysis is performed for the rim support of a pressurized
off-axis paraboloidal membrane, serving as a space-based solar concentrator. The
function of the rim support is to take up the tensile forces created by the stretched
membrane. This paper deals with the load analysis. The tensile forces transmitted
by the membrane to the rim support are calculated, and are proportional to pb,
where p is the inflation pressure and b is one-half the major axis of the elliptical
rim. Next, the internal forces and moments generated in the rim support by the
membrane forces are calculated. The compression forces are considerably larger,
at any point, than the shear forces; both are proportional to pb’. The bending mo-
ments are proportional to pb®. The critical point is found to be at the top of the
rim, where both the bending moment and compression force are at their maximum.

INTRODUCTION

Inflatable structures employing thin, pressurized membranes almost in-
variably require some form of rim support (Arduini et al. 1988; Kato et al.
1988; Belvin et al. 1987; Hedgepeth 1985). The application to solar reflec-
tors or pressurized antennas, for example, requires the membrane to assume
a paraboloidal shape of considerable accuracy; the inflation pressure must
be large enough to provide a smooth surface and eliminate any wrinkles or
waviness (Thomas and Friese 1980). The pressure acting over the membrane
surface creates a sizable force that must be taken up by the rim support at
the edges of the membrane. The rim support must have not only the strength
to carry this load, but also the rigidity to resist deformation and allow the
membrane to maintain its accurate shape.

The purpose of the present analysis has been to calculate the loads on the
rim support of the deployable solar concentrator (Grossman and Williams
1989), which carries two geometrically identical membranes, one serving as
a reflector and the other as a canopy, in an off-axis paraboloidal configu-
ration. The rim support contemplated for this unit is an elliptical torus with
a circular cross section. In this study we prefer to employ the more general
term rim support rather than forus since the toroidal shape is a particular
case and is not necessarily the optimal one for supporting the membranes.

The forces transmitted to the rim support by the membranes create in it
internal compression and shear forces as well as bending moments. To de-
sign the rim support, one must calculate these loads and the stresses resulting
from them, as well as the deformations they generate. This paper describes
the method of analysis and the expressions developed for the loads. The
scaling parameters of the system are derived in terms of the membrane ge-
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ometry and inflation pressure. A companion paper describes the deformation
analysis.

FORCES IN PARABOLOIDAL MEMBRANE

The first step toward the evaluation of the rim support loads is to calculate
the tension forces in the membrane. The geometry of the off-axis membrane
is quite complex; the calculation may be simplified because this membrane
forms part of a larger, axisymmetrical paraboloid. The geometry of the un-
inflated off-axis membrane and the gore and mandrel shapes used in its fab-
rication are all calculated based on this (Williams 1987).

Fig. 1 describes the geometry of the off-axis paraboloidal membrane and
the forces it applies at points along the rim. The off-axis shape is formed
by a plane intersecting the parent paraboloid of revolution
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FIG. 1. Geometry of Off-Axis Paraboloidal Membrane
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at angle B. The rim is an ellipse with the major and minor axes 2b and 2b
cos B, respectively. When viewed along the paraboloid’s axis, the rim as-
sumes the shape of a circle with a diameter equal to the ellipse’s minor axis
and a center at distance 2F tan B from the paraboloid’s axis. Note that the
parameters F, b, and B determine the geometry of the off-axis membrane
completely and uniquely.

The principal stresses in a thin-walled body of revolution may be calcu-
lated readily based on the internal pressure and the radii of curvature in the
meridional and circumferential directions (Roark 1971). In this analysis of
the membrane it is convenient to consider the tensile forces per unit length,
which are equal, at each point, to the stress times the thickness. The prin-
cipal tensile forces in the on-axis paraboloid, T,, in the meridional direction
and T in the circumferential direction, are shown in Fig. 1. 7,, at a particular
height z may be calculated by cutting the paraboloid perpendicular to its axis
and equating the z-component of the meridional force operating along the
cut edge with the pressure force in the opposite direction

20T, SIS = TID o ettt e e )

Then, T, may be found from its relation to T, the pressure and the radii of
curvature R,, and R, in the meridional and circumferential directions, re-
spectively (Roark 1971)

Calculating the geometrical parameters from the paraboloid of Eq. 1, we
find

r 243/2
RmZTZZF[l+(2—F)] ......................... 6)
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Forces TRANSMITTED TO Rim SUPPORT

The tensile forces in the on-axis paraboloid are now applied along the
elliptical rim forming the edge of the off-axis membrane. Fig. 2(a) describes
the rim on a Cartesian coordinate system with its origin at the center of the
ellipse, with x, y, and n along the minor axis, the major axis, and normal
to the ellipse’s plane, respectively. Consider a small element of the rim of
length di, with a small portion of membrane attached to it, cut along one
meridional and one circumferential line. As illustrated in Fig. 2(b), the me-
ridional tensile force T,, operates along a cut edge of length dS. and the
circumferential tensile force T, operates along a cut edge of length dS,,. The
membrane forces to be taken up by the rim support are therefore 7.dS,, in
the circumferential direction, 7,dS. in the meridional direction, and pd-
§.dS,./2 normal to the membrane. Note that the pressure force is an order
of magnitude smaller than the two others, as it includes a product of two
differentials, and vanishes in the limit.

The membrane forces are counterbalanced by rim forces, operating along
the membrane /rim support boundary of length dl, as follows: T,d! in the x-
direction, T,d! in the y-direction, and T,d! in the n-direction. Force balances
on the element of Fig. 2(b) in the x-, y-, and n-directions yield T,, T,, and
T, from the known T. and T,,.

Because of the complex geometrical relations governing the conversion of
various vectors from the membrane coordinates along meridional and cir-
cumferential directions to those in the plane of the rim, it is convenient to
carry out the conversion in two steps. First, the membrane forces and length
elements are expressed in terms of their components along the axes r, 0,
and z of a cylindrical coordinate system as shown in Fig. 1. Next, the change
from the cylindrical to the rim coordinate system is executed.

In the cylindrical coordinate system

29172
,
ds, = Vdr’ + d* = [1 + (;) ] dro. .o (9a)

(a) (b)

FIG. 2. Forces Transmitted to Rim Support by Pressurized Membrane: (a) Mem-
brane Element Location; and (b) Forces Applied to Membrane Element
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The meridional force T, is broken into axial and radial components, T, and
T,, as shown in Fig. 1. The circumferential force T, is in the same direction
as 70. (Note that the sign has to be matched when switching from the mem-
brane to the cylindrical coordinate system. T,, T, and T8 shown at the top
part of the rim in Fig. 1 are all in the negative directions.) Using the slope
angle 8 of the on-axis paraboloid, Eq. 4, and the expressions for T. .and T,
(Egs. 7 and 8), we can calculate the total membrane forces transmitted to
the rim element d! in the radial, circumferential, and axial directions as fol-
lows:

T.dS. =T,cosddS, = pFrd® ....... ... . ..., (10a)
2
r
TedS,, = T.dS,, = pF[l + 2(—) ]dr ............................ (10b)
2F
2
T.dS. =T, sin ddS,. = p 5 AO (10¢)

Figs. 1 and 2 help illustrate the conversion from the cylindrical to the rirp
coordinate system. Starting with the axial component T, we notice that it
forms a fixed angle B with the n-axis, perpendicular to the ellipse’s plane,
at all points along the rim. It contributes components only in the y- am;l n-
directions, T, sin B and T, cos B, respectively, and none in the x-direction.
T. and T9, best illustrated on the bottom part of Fig. 1, may each be broken
into an x-component and another one perpendicular to it in the r-8 plape,
which is broken further into y- and n-components. Taking this into cons@-
eration and writing a force balance in the x-, y-, and n-directions, we obtain

T.dl = (T,dS)sin @ + (TgdS,)CcOsS O ... ..o, (1la)
T,dl = (T,dS.) cos 6 cos B — (TdS,) sin@cos B + (7,dS.)sin B ...... (11b)
T,dl = —(T,dS.) cos 8 sin B + (T,dS,,) sin 0 sin B + (T.dS.) cos B ... .. (11c)
where

0 = SIN T o e (12)

as is evident from Fig. 2. '
Substitution in Egs. 11a—c from Eqgs. 10a—c yields

de g ? dr

r X
= — — — =] — ¢ e (13a)
L pF{x a [1 +2<2F> ] \/l (r) dl}

r de
T, =pF{[\/r2 — x* cos B + — sin B:I —

2F dl

: dr
- [1 + 2(L> ]fcosﬁ—} ................................... (13b)
2F r dl

? d
T, =pF{[2r—Fcos B — Vr* — x*sin B] —

0
dl [Continued]
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r\]x dr
+ 1+2§ ;sdel ................................... (13¢)

To complete the conversion, it is necessary to express r, dr/dl, and d6/dl,
in Eqs. 13a—c in terms of the rim coordinates, x and y. First, we note that

di* =dSI+dSL =d +dy .. (14)
x and y are related to each other by the ellipse’s equation
2 2

X y
T S T
Yoo 7 ... (15)
so that

Cos
=V -y cosB  dx= _2CcosB AY oo (16)
A /bz _ yz

and

b* — y* sin’B
=Vdd + dy* = \/ dy 17)

oyt D
The relation of r to x and y is found from geometrical considerations

P=x+ QFtan B + ycos B) ..o (18)
Substituting x from Eq. 16 we obtain
r? = 4F” tan®B + b* cos’B + 4Fy sin B

Also, at each point on the ellipse, lying on a plane inclined at angle 8

dz =SINBdy ... ... (20)
and therefore, from Eq. 4
2F 2F sin B
dr=—dz=———dy.. ... .. . . 2n
r r

Substituting from Eq. 11 in Eq. 14 we obtain

b’ cos’B  sin’B
rdo = \dl2 — dr — d2 = Ep - o 17 22)
2

We have now expressed all the differentials in terms of dy and may find
the derivatives dr/dl and d0/dl from Eqgs. 17, 21, and 22.

dr _2F sin B b -y
- - e R RRRRARRRERERRRRE (23)

_‘@ _ +l [ X <2F>2 1/2 . ——b2 .
dl _r (b2 _ yz) taHZB , sin B b2 _ y2 Sin2 B ........ (24)

The = sign in Eq. 24 accounts for d6/dl changing sign at points A along
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the rim (Fig. 1), when proceeding in the positive y-direction, from a positive
value for points characterized by r < r, to a negative value for points char-
acterized by r > r,. A marks the point where the meridian is tangent to the
rim. Note that d6/dl appears in the terms originating from 7, and 7, in Eqgs.
13a—c. We notice that T8 always operates on the rim in the negative 6-
direction. However, T, and T,, both components of T,, switch sign at the
points A. The part of the rim characterized by r < r, sees T, and T, acting
on it in the positive r- and z-directions. The reverse is true for the part of
the rim characterized by r > r,. r, at the tangent point may be readily found
from geometrical considerations

Fa =V F an B)2 — (B OS BY e v veeee e (25)

It is easily verified that for r = r,, d0/dl in Eq. 24 vanishes.

Finally, substitution of x, r, dr/dl, and d8/dl from Egs. 16, 23, and 24
into Egs. 13a—c will yield the forces exerted on the rim, T, T,, and T,, per
unit length of rim, for each y. The expressions may be written in the fol-
lowing dimensionless form:

T, = (pb)TY, T,= (pOTY, T,=@EbT: ... ... .. (26)

where T T}, and T, = dimensionless functions of B and of

F y
F, = D M e 27
as follows:
F,sin B
T*=[£CD + V1 — C*(1 + 2B%] Tpr e (28a)
Fsin
= [=(V1 — C*cos B + B sin B)D — (1 + 2B%)C cos B] ... (28b)
F|sin B
T*={=@Bcos p — V1 — C?sin B)D + (1 + 2B*)C sin B] ) (28¢)
where
0s B .
B = tan’B + aF F1 =SINPB e (29)
V1~ ylcosB
C = (30)
2F B
BZ
D = -~ L 31
(1 = y7) tan’B
02 w2
X = \/ly_ﬁ. ............................................ @)
1 -y

Note that the scaling factor pb applies to all the tensile forces per unit length
of rim, T,, T,, and T,, transmitted to the rim by the membrane.
Fig. 3 describes the distribution of 7, and 7, along the elliptical rim, for
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INTERNAL FORCES AND MOMENTS IN RIM SUPPORT

Having calculated the tensile forces exerted by the membrane on the rim
support, we can calculate the internal reactions—forces and moments—pro-
duced in it by the external load. These internal forces and moments result
in stresses in the rim support material, which must be determined to calculate
the strength. We will employ the free-body method, where the rim support
is cut and a portion of it, subject to external loading, is analyzed.

Taking advantage of the symmetry with respect to the y-axis, we choose
to make the first cut along the axis, as illustrated in Fig. 5(a). The reactions
at the two cut ends are marked by F, and M, at the low end (closest to the
paraboloid’s axis) and F, and M, at the high end (farthest from the para-
boloid’s axis). Symmetry does not allow any shear forces in the y-direction
because of the requirement for them to be equal and opposite on the two
sides of the section. Consequently, there are only forces normal to the cross
section (i.e., in the x-direction) and bending moments, as shown. Force bal-
ances on the right half of the rim support in the x- and y-directions yield

+b

SP,=F, + Fy + f Todl = 0 ot (36)
y=—b
+b
3P, = J Tydl = 0 ..t 37)
y=-b

A moment balance about the low cut end gives
+b

+b
M =M; + My — 2bFy + J’ xT,dl — f (y+b)T,dl=0....... (38)
y=—b y=—b

()

FIG. 5. Internal Forces and Moments in Rim Support: (a) Cut along Axis of Sym-
metry; and (b) Loads Applied to Rim Element
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Eq. 37 does not provide any new information, since it does not contain any
of the reactions. It merely provides a check on T, that was calculated earlier,
to confirm that y tensile forces on the rim are balanced. We thus have two
equations, Eqs. 36 and 38, for the four unknowns, F;, Fy, M,, and M. The
problem is clearly statically indeterminate.

Additional information on this type of problem must be obtained from an
analysis of the deformations. In this particular example, due to the symmetry
with respect to the y-axis, it is required that the horizontal deflections as
well as the angular deformations at the cut ends by zero. There are several
ways of implementing this requirement to calculate the reactions, including
virtual work and the like. We will employ Castigliano’s second theorem
(Marim and Sauer 1954), which makes use of the strain energy U. This
energy is calculated in terms of the unknown reactions. To obtain the two
additional equations required to solve the present problem, we express U in
terms of M, and F,; and require that

aU

S0 e s 39
oM, (39)
1
T O 40
oF, (40)

The total strain energy contains terms associated with tension/compres-
sion, shear, and bending of the rim support. To calculate it, we must find
the normal and tangential forces and the bending moments at each cross
section. To this end, we cut the right half of the rim support further, at an
arbitrary point, as shown in Fig. 5(b). We load the cut end with internal
forces F, and F, and with a bending moment M, as shown. A force balance
in the x- and y-directions and a sum of moments about the low cut end give
three equations for F,, F,, and M in terms of the two still unknown reactions
F, and M,

SP,=F, + F, + f Todl = 0ot @1
y=—>b
3P, =F, + f Todl = 0. .ot (42)
y==b

EM=ML+M—(y+b)F,+xF_,A—-J‘ (y + b)T.dl
y=—b

+ f T, dl =0 . (43)
y==b

Substituting T, and 7T, from Eq. 26, dl from Eq. 17, and solving, we find
V1

F}(y) = _]l _'pbz.f Tflﬁb@ ................................... (44)
-1

F(y) = —pb’ J THKAY) < ooe e (45)
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adl

M(y)=-M, — (1 +ypbF, — (1 + y,)(pb3)f T¥Kdy,
-1
a4 241

+ V1 — yi cos B (pb’) j T¥Kdy, + (pb’) f (1 + y)T}Kdy,
1

-1 -

a4l
— cos B (pb*) J’ V1 =Y THKdy, . oo (46)
-1

where y, = y/b, Eq. 27, and y, = a variable of integration to be substituted
for y, in the expressions for T} T;", and K, In particular, fory = b, F, =
Fy, F, = 0, M = M, as may be verified by comparing Eqs. 44-46 with
Eqgs. 36-38.

The form of Eqs. 44-48 yields the scaling laws for the internal forces and
moments. It is evident that the forces scale with pb® and the moments with
pb®. Using the normalized quantities

FX
Fr s (47a)
(pb?)
F¥= o RPURTR (47b)
T (pb)
F,
K 47
L (b)) @
D 47d)
" (pbd (
M
M* = (47¢)
(pb?)
Mr = A7f)
L (pb3) ......
% = M’i ................................................... @78
(pb?)

Eqs. 44—46 may be rewritten in a completely dimensionless form.

From F, and F, we may calculate the shear forces (normal to the ellipse)
and the tension/compression forces (tangential to the ellipse), Fs and Frp,
respectively, at each cross section, as follows:

Fr=F,siny — FLCOSY ...t iiiiintittiiaeenn s (48a)
Fs=F,cosy + F,SINY.. ..o (48b)

Or in normalized form

With Fg, Fy, and M known at points along the rim, the total strain energy
may be found from the formula (Popov 1952)

M  F: sF?
U= —+ — + Al (50)
2EI 2EA 2GA

where the three terms from left to right represent energy associated with
bending, tension/compression, and shear, respectively; E and G = the mod-
ulii of elasticity and shear, respectively, of the rim support material; A =
the cross-section area; and / = the moment of inertia of the cross section
for bending about an axis normal to the x-y plane. The dimensionless factor,
s, expresses that the shear stresses are not uniformly distributed over the
cross section area; its value depends on the shape of the cross section. We
will see later that the shear forces are considerably smaller than the tension/
compression forces for typical off-axis geometries; they vanish completely
in the rim support of an on-axis membrane. Hence, the shear energy is small
compared to the tension/compression energy, and both are generally small
compared to the energy due to bending.

Eq. 52 may be rewritten in a dimensionless form, by substituting the nor-
malized quantities from Eqs. 47 and 49 as follows:

2,7 +1

U= ry M*2 + iFFP + JFKdy . o (51)
El J_,

where i and j = dimensionless parameters

1

o (52)

_E

J w .................................................... (53)

and are generally much smaller than unity.
F§ and F§ in Eq. 51 are functions of the still unknown F;; M* is a function
of both F; and M;. Substitution in Egs. 39 and 40 yields

+1 *

M* KAy, = 0 oo 54
» BM,’_" Vi (54)
+1
oM* aF} aF;*)
M* + FE— 4+ FE—Kdy, =0 .. (55)
L ( oFr | arr T arr)

Using Eqs. 48a—b and 50 to express Fy and F{ in terms of F; and F}' and
calculating the derivatives from Eqgs. 44-46, we find

aM*

Yy = L e e (56a)
L

oM*

e e O T e 2 TN (56b)
L

aFF

57* 008 Y ittt e e e e e (56¢)
L



aF}
e k. TP (56d)
aF}

and hence, Eqs. 56 and 57 become

+1

f MEKAY, = 0 oo et (57)
-1
+1

J' [+ yIM* —icosyF¥ + jsinyF&Kdy, =0 ................. (58)
-1

Let

24! Y1

H((y)=V1- )’% cos B T;de)’z -1+ )’1)J T;de)’z

-1 -1

+ f A+ y)TF— V1 —ycos BTHKdy, ..o (59)
-1

adl Al

T*Kdy, + (j — i) sin y cos 'yj T¥Kdy, (60)

=1

Hy(y)) = i cos™y + j sin’*y) f

Then, substitution from Eq. 46 in Eq. 57 yields

+1 +1 +1
Mff Kdy, + Fz‘J (1 + y)Kdy, = J HEKdy, ... (61)
-1 -1

and substitution from Eqs. 44-46, 48a—b, and 49 into Eq. 58

+1 +1
ij (1 + y)Kdy, + FZ‘f [(Q + y)* + i cos™ + j sin*y]Kdy,
-1

-1
+1

= J' [+ yDH, —HJKdy, ..o (62)
-1

where sin vy and cos vy in Egs. 60 and 62 are functions of y,, as per Eq. 35.
Eqgs. 61 and 62, provided by Castigliano’s second theorem for this stati-
cally indeterminate problem, may be solved for F; and M}, once the integrals
are evaluated. We notice that the integrals contain the membrane loads T
and T, geometrical parameters of the off-axis paraboloid and rim support,
and the cross-section parameters i and j—all given or known from earlier
calculations. Once the low-end reactions F; and M} are found, we can cal-
culate F5 and M} from the equilibrium Egs. 36 and 38. This completes the
problem, since now all the internal forces and moments are given through
the expressions already developed, linking them to the low-end reactions.

RESuLTS

The integrals in Eqgs. 59-62 are elliptic, and cannot be calculated analyt-
ically. A computer code based on the foregoing analysis was used to cal-
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culate the internal forces and moments in the rim support for the geometry
of the deployable solar concentrator (Grossman and Williams 1989). We
assume { = j = 0, a good assumption for most practical cases, as is evident
from Eqs. 52 and 53.

Fig. 6 shows the distribution along the elliptical rim of F, (on the right)
and F, (on the left). The positive directions of F, and F, are indicated in
Fig. 5(b), as they operate on the top cut end of the portion shown. Thus,
F, at y = —b is equal in magnitude and opposite in direction to F;. Pro-
ceeding upward along the rim (y increases), F, becomes smaller and smaller
as the contribution of membrane forces pulling inward toward balancing off
the reaction F; increases. By the time y = 0 is reached, the sum of mem-
brane forces 7, over the bottom half of the rim is approximately equal to
F;, and hence F, = 0. Further up, F, reverses direction to help F; in coun-
terbalancing the membrane forces, and at the top (y = +b), F, becomes
equal to the top reaction F. A similar behavior is exhibited by F,, which
must counterbalance the membrane forces T,. There are no y reactions, how-
ever, at the cut ends, for reasons of symmetry as explained in the previous
section. Thus, F, = 0 at y = —b, and increases with increasing y, pointing
downward, to balance off the membrane forces pulling inward. F, reaches
its maximum at y = +0.24b, as shown, and then begins to decrease, as T,
forces pulling inward reverse their direction (Fig. 3). This trend continues
until F, is reduced to zero at y = +b.

Fig. 7 describes the internal force distribution from a different angle, where
F, and F, have been replaced by shear and compression forces, Fg and F,

] TN

| (Fx) pax = 1.51pb2

- 2
== (Fy)pax =0-72 pb
@y =0.24b

FIG. 6. Distribution along Rim of Internal Forces in x- and y-Directions
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1
(F)max = 1-51pb?

(Fs Imax = 0-40pb°
@y =0.700

FT FSZ
pb

FIG. 7. Distribution along Rim of Internal Forces in Normal and Tangential Di-
rections

respectively, as per Eqs. 48a—b. (The distribution along the rim is described
in terms of the vertical bars, which indicate magnitude, but not direction.)
F. is shown on the right part of the ellipse and F; on the left. It is clear that
the compression force at each point is considerably greater than the shear
force. The maximum compressive load is reached at the top of the rim (y
= +b) and is approximately 1.5pb>.

Fig. 8 describes the distribution of the bending moments with the vertical
bars indicating magnitude and the curved arrows indicating direction. Sizable
moments occur at the top and bottom ends, M = 0. 19pb3 aty = —band M
= 0.21pb* at y = +b. The parts of the rim adjacent to these two ends tend
to bend so as to form a smaller radius of curvature than in the unstressed
shape. The part around y = O tends to straighten out, or form a larger radius
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FIG. 8. Distribution along Rim of Internal Moments

of curvature, than in the unstressed shape.

Depending on the relative magnitudes of the area and moment of inertia
of the cross section, the bending moments tend to create considerably larger
stresses than the shear or compression, and are therefore the predominant
factors in determining the strength of the rim support. The critical point is
at y = +b, which experiences both the largest moment and largest com-
pressive force (Figs. 7 and 8).

CONCLUSION

A load analysis has been performed for the rim support of an off-axis
paraboloidal membrane, such as the deployable solar concentrator. The func-
tion of the rim support is to take up the tensile forces created by the stretched
membrane. In the analysis, use was made of the off-axis membrane’s form-
ing part of a larger, axisymmetrical paraboloid. The meridional and circum-
ferential forces of the latter have been converted to the rim coordinate system
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to give the forces transmitted to the rim support. These tensile forces were
found to be proportional to pb.

The internal forces and moments generated in the rim support by the mem-
brane forces were calculated. The compression forces are considerably larger,
at any point, than the shear forces; both are proportional to pb’. The bending
moments are proportional to pb’.

The dominant factors in the rim support strength are the bending moments,
which generally produce larger stresses than the shear and compression forces.
The critical point is at the top of the rim, where both the bending moment
and compression force are at their maximum.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

A = cross-section area (m?);

dimensionless parameter, Eq. 31;

one-half of major axis of elliptical rim (m);

dimensionless parameter, Eq. 32;

dimensionless parameter, Eq. 33;

modulus of elasticity (N/m?);

focal length of on-axis, parent paraboloid, Fig. 1 (m);
F/b;

compression/tension force at high cut end of rim, Fig. 5 (N);
F H/sz;

compression/tension force at low cut end of rim, Fig. 5 (N);
F./pb®

shear force in rim (N);

F./pb;

compression/tension force in rim (N);

Fr/pb’;

internal force in x-direction, Fig. 5 (N);

F./pb*;

internal force in y-direction, Fig. 5 (N);

F,/pb*;

shear modulus (N/m?);

dimensionless parameter, Eq. 61;

dimensionless parameter, Eq. 62;

moment of inertia of cross section (m®);

1/Ab%

sEl/GAb?,

dimensionless parameter, Eq. 34;

arc length along rim, Fig. 2 (m);

internal moment, Fig. 5 (N-m);

M/pb;

internal moment at high cut end of rim, Fig. 5 (N-m);
My/, pb3;

internal moment at low cut end of rim, Fig. 5 (N-m);

M/ Pb3§

inflation pressure (N/m’);

radius of curvature in circumferential direction (m);

radius of curvature in meridional direction (m);

radial coordinate of on-axis, parent paraboloid, Fig. 1 (m);
radial coordinate of point A, where meridian is tangent to rim,
Fig. 1 (m);

arc length in circumferential direction, Fig. 2 (m);

arc length in meridional direction, Fig. 2 (m);

factor in Eq. 52 expressing nonuniform distribution of shear stresses
over cross section;

tensile force in circumferential direction (N/m);
circumferential tensile force (N/m);

meridional tensile force (N/m);

tensile force exerted by membrane normal to rim plane (N/m);
T./pb;

tensile force in radial direction (N/m);

tensile force in direction normal to rim (N/m);

tensile force in direction tangential to rim (N/m);
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tensile force exerted by membrane or rim support in x-direction
(N/m);

T./pb;

tensile force exerted by membrane on rim support in y-direction
(N/m);

T,/pb;

tensile force in axial direction (N/m);

strain energy, Eq. 52 (J);

rim coordinate along minor axis (m);

rim coordinate along major axis (m);

y/b;

axial coordinate of on-axis, parent paraboloid, Fig. 1 (m);

angle of inclination of off-axis rim, Fig. 1 (rad);

slope angle of elliptical rim, Fig. 2 (rad);

slope angle of on-axis, parent paraboloid, Fig. 1 (rad); and
circumferential coordinate of on-axis, parent paraboloid, Fig. 1 (rad).
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ANALYSIS OF RIM SUPPORTS FOR OFF-AXIS
INFLATABLE REFLECTORS.
II: DEFORMATIONS

By Gershon Grossman'

ABSTRACT: A structural analysis is performed for the rim support of a pressurized
off-axis paraboloidal membrane, serving as a space-based solar concentrator. The
function of the rim support is to take up the tensile forces created by the stretched
membrane. This paper analyzes the deformations in the rim support, based on an
earlier evaluation of the internal forces and moments resulting from the load ap-
plied by the membrane. The deformations are calculated in the x- and y-directions
at all points along the rim. They are shown to depend on the rim geometry, the
applied loads, and a dimensionless rigidity parameter comprising the inflation pres-
sure, the major axis of the elliptical rim, the modulus of elasticity of the rim sup-
port material, and its moment of inertia. The angular deformation at each point is
also evaluated. A simplified solution for small deformations shows them to be
approximately proportional to the rigidity parameter.

INTRODUCTION

The purpose of the present analysis has been to calculate the deformations
in the rim support of the deployable solar concentrator, a lightweight in-
flatable device providing solar heat at high temperature to a hydrogen engine
aboard a solar rocket. The latter is a vehicle designed to carry payloads from
a low earth orbit (LEO) to a geosynchronous orbit (GEO) at significant mass
savings compared to the more conventional chemical propulsion. The de-
ployable solar concentrator, its geometry, and its structure have been de-
scribed in detail by Grossman and Williams (1989). It consists of a plane
rim support in the form of an elliptical torus that carries two geometrically
identical membranes, one serving as a reflector and the other as a canopy,
in an off-axis paraboloidal configuration.

A companion paper (Grossman 1991) has described an analysis of the
loads exerted on the rim support by the membranes. The deformations de-
pend directly on the loads, as well as on the geometry and elastic properties
of the rim support material. In the present paper, frequent reference is made
to the load analysis, and the same notation is employed, where applicable.
The reader is urged to familiarize himself with the load analysis in the com-
panion paper before proceeding.

DEFORMATION ANALYSIS

Fig. 1(a) describes schematically the elliptical rim in the same x-y coor-
dinate system employed in the load analysis (Grossman 1991). The solid

'Prof., Dept. of Mech. Engrg., Technion, Israel Inst. of Tech., 32000 Haifa, Is-
rael; formerly Program Engr., L’Garde, Inc., 15181 Woodlawn Ave., Tustin, CA
02680.

Note. Discussion open until June 1, 1991. Separate discussions should be sub-
mitted for the individual papers in this symposium. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Journals. The
manuscript for this paper was submitted for review and possible publication on April
27, 1989. This paper is part of the Journal of Aerospace Engineering, Vol. 4, No.
1, January, 1991. ©ASCE, ISSN 0893-1321/91/0001-0067/$1.00 + $.15 per page.
Paper No. 25374.
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(b) ” (¢

FIG. 1. Geometry of Deforming Rim Support: (a) Unstressed Rim (Broken Line,
Index 0) and Stressed Rim (Solid Line, Index 1); (b) Element of Unstressed Rim;
and (¢) Element of Stressed Rim

and broken lines represent the stressed and unstressed shape, respectively.
It is required that the rim assume the design elliptical contour when subject
to the load; therefore, the solid line describes a perfect ellipse, whereas the
shape of the broken line is to be calculated. A small element dl, of the
unstressed rim becomes d;, when the rim is stressed, as shown.

Figs. 1(b) and 1(c) describe the rim-support elements dl, and dl, in a mag-
nified form. The elements dl, and dl, actually represent the lengths of the
arc along the neutral line. In addition to this length change, the radius of
curvature of the rim-support element along the neutral line varies, when
stressed, from R, to R,. As the element bends, the angle between the planes
defining its two end cross sections changes as well. Let us considef a “fiber”
of the rim support material located a distance § from the neutral line. Under
stress, it changes its length from (dl, + dA\,) to (dl, + d\,), where dA\ is the
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amount by which the fiber is longer than the neutral line. The strain in this
fiber is given by

€ =

Ao+ dhg T e)
Is is easy to show by similarity of triangles in Figs. 1(b) and 1(c) that
d\g = gd—lo .................................................... (2a)
Ry
d\) = §% ................................................... (2b)
Rl

From the results of the load analysis, considering the effects of both bending
and compression, the stress in the fiber is

Fr M
=—+
A 1

[0

where F; = the tension force (or compression, when negative); M = the
bending moment exerted on the element by the external load; and A and /
= the area and moment of inertia, respectively, of the rim-support cross
section. Denoting the elastic modulus of the material by E and using the
elastic stress-strain relation we obtain from Egs. 1 and 3

dl, + dx, | 1<FT M )

A 1

dly + dhg E
and substituting the values of d\, and dA, from Eq. 2

afieg)=[rep(Ze o) |a1+ £) 5
1 R, £\2 Tg o R 5)

In particular, for the neutral line (¢ = 0)

subtracting Eq. 6 from Eq. 5 and rearranging, we find

L+ — == )==l1+=] @)
EA/\R, Ry El Ry

and since £ << R, everywhere, €/R, may be neglected.
The radius of curvature and arc length of the rim may be expressed in
terms of the x-y coordinates as follows (Popov 1976):

dl = (@ + Ay ®)
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substituting in Eqs. 6 and 7 we obtain

& + ay\"” F
(;—y—; i (10)
de + dyo EA
d2y1 dz}’o ﬂ
2 2
dx, dxo Bl (11)

@7 @7 08

Eq. 10 may be rewritten as

2 2 2 2
B 1 IR — (m
dx, EA/ \dx, dx,

and finally, combining Eqs. 12 and 11 yields
M

4> Fr\'(dx\' & EI a\ 1"
—%(1+—T><——°) e Y e N (13)
di EA) \dx, F, dx,

)
1+
EA

Egs. 12 and 13 may be solved together for x, and yo, in terms of y,. Note
that x, is known in terms of y, from the equation of the ellipse:
2

Xy 2 2
F oY = BT e (14)
cos’B 7

Also, F; and M are known in terms of y, from the load analysis (Grossman
1991). Thus, the simultaneous solution of Eqs. 12 and 13 would yield the
unstressed shape of the rim.

It is interesting to note that in the case of no compression, Fr = 0, Eq.
12 yields dx3 + dy; = dx} + dy}, which means no change in length of the
element’s neutral line when stressed. Also, substituting dy,/dx, = dy,/dxg
= 0 in Eq. 13 in addition to F; = O yields the familiar formula for pure
bending of a straight beam (Popov 1976).

SOLUTION

To solve Egs. 12 and 13, let us define

dy,
AN P = e e e e e s (15a)
] ™
F b?
c=1+—T=1+(p—>F’T" ..................................... (15b)
EA EA

where { = the slope angle of the unstressed rim; and ¢ = a dimensionless
compression parameter. Substituting in Eqs. 12 and 13 yields

2 2
dx, dy,
°(1 + tan? _°> -1 (_> ................................ 16
X +tan\b)< + (16)

1 1

M

c dtan ) (di’f = _ —E—i [1 + (91)2]3/2 .................... an
dx, dx, dx% c dx;

Assuming dx,/dx, # 0 everywhere (to be confirmed later), Eq. 17 may
be divided by Eq. 16 to give

d(tan ) d%y,
-_— 2
dx 1 dx? d M
D4 1+<i)— .................. (18)
1 + tan \ij (o (dy1> dxl cEl
1+ =
dx,

The right-hand side of Eq. 18 is known as a function of y,; x, is given in
terms of y, by the elliptical geometry, Eq. 14; M and ¢ are known from the
load analysis (Grossman 1991). Eq. 18 may therefore be rewritten as fol-
lows:

dzyl M7 [ dx
dx dy.\" Et || dy,
dp =] ———— — {[1+ (—) —N\N=Jdy, o (19)
dy, dx, c c
1+ -
dx

When one is performing the integration, a boundary condition is required.
From symmetry considerations [Fig. 1(a)] we note that at y = —b, dy,/dx,
= 0 and therefore also ¢ = 0. Eq. 19 thus yields

l!l:

w od <dy2> M
dy, \dx; \/1 s (dx2)zgldy2

2
—b d dy
1+ (—y 2) :
dx,

where y, and x, = variables of integration. Note that in the no-load case,
substituting M = 0 and ¢ = 1 in Eq. 20, we find & = arctan (dy,/dx,),
which indicates no deformation, as should be the case.

From Eq. 16 we now obtain

2
d 1/2
1+ ( )’1)
dx, 1 dx,

c c

il [ [P 21
dx; ¢ L 1+ tan’y eh
and using the definition of the slope angle
d dyq dx,
e O b o 2)

= tan
dxl dxo dxl dxl

Rearranging the terms, we finally obtain

dﬁ = \/::—(?ﬂ_l_f cos ¥ 250
dy, dy, o TTTTTrrrrreescneeseeee a




d dx,;\ sin ¥
Do _ \/1+(—‘) e (23b)
dy, dy, Cc

which may be integrated with respect to y, to find x, and y, at all points and
hence the shape of the unstressed rim. Substituting the relation between y,
and x, from the shape of the ellipse, Eq. 14, and arranging the terms in
dimensionless groups, we find

2
_ 12
- (ﬁ) sing |
dx, b cos
— = | (24a)
dy1 ] <y1> c
L b i
2 172
1- <&> sinﬂ
dyo b sin ¥
— = — | — (24b)
dy, L ) <y1> c
b -

. jw/b [ cos B (pb“) M*:| 1 — 2 sin?B dy, 05
1 — y3 sin’B)*? 1) e 1 —y2 PUREEEEEEEE

where M* = (M /pb’) is the dimensionless bending moment (Grossman 1991).

Having found the shape of the unstressed rim support, it is now possible
to calculate the deformations. At each point, the deformation may be defined
in terms of its x- and y-components, u and v, respectively

u = (x; — xp) U= (] 7 P0) e eeveoee e (26)

Since the deformations are small in comparison to the initial rim dimensions,
calculating x,, y, from Eq. 24 and then subtracting from x;, y, will cause a
numerical error resulting from the need to take a small difference between
two large numbers. Rather than doing this, we will attempt to derive an
expression for u and v. From Egs. 26, 23, and 8

dx, cos
du = < - )dll ................................. (27a)
Vdx} + dy} ¢
4 .
dv = ( n 4 \b)dl. .................................. (27b)
Vdxi + dy? 4

The slope of the stressed rim, &, is defined by

d
$ = arctan(f) ............................................... (28)
i

substituting & from Eq. 28 and ¢ from Eq. 15b in Eq. 27 yields

pb* dl,
du=|cosd —cosyp+ |— |Ffcosdb|— ...l (29a)
EA c
. . sz . di,
dv=|sind—siny+ [—|)Ffsind|— ....... ... (29b)
EA c
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which may be rewritten as

+ dl,
du = [2 sin (qj > ¢> i (dJ > ¢> (EA)FT ¢] 7 ........... (30a)
dv = [—2 cos (‘1’ ; d)) sin (\!1 > ¢) + (EA)FT sin ¢] djl .......... (30b)

Note that the term sin () — $)/2 in both Egqs. 30a and 30b can be quite
small if the deformation is small and the slope angles of the stressed and
unstressed rim are close to each other; ( pbz/EA) in the next term can be
quite small too, particularly for stiff materials. Thus, du and dv are each
expressed as the sum of two small numbers, rather than as the difference of
two large numbers. The numerical error in the former is much smaller than
in the latter, making the former convenient for computer calculations.
Finally, from the definitions of { and ¢, Egs. 20 and 28, we find

d?y, M
dx} . EI | dl,

—5 (1 £
- d:
-G
dx,
and substituting the relation between x, and y, from the shape of the ellipse,
Eq. 14

(vi/b) 4 PIEETIETY
cos B pb*\ M* 1 — yj sin’@ dy
o [T () [
(1 — y2 sin B) EI c 1 -y c

The value of (y = &), obtained by a simple numerical integration from Eq.
31b, is substituted in Eqs. 30a and b, which are integrated to give the de-
formations « and v at all points along the rim.

Y1

bx =

REesuLTS

The results of the foregoing analysis have been expressed in dimensionless
form, for clarity and generality. The analysis has yielded the dimensionless
deformations in the x- and y-directions, u/b and v/b, respectively, at all
points along the rim, as functions of the following parameters: (1) The rim
geometry, as expressed by cos, the ratio of the minor to major axis of the
ellipse; (2) the applied membrane load, as expressed by M*, the dimen-
sionless moment, and ¢, involving the dimensionless compression force, F7;
and (3) the rigidity parameters I/Ab” and pb*/EI, involving the elastic prop-
erties of the rim support material and its cross-section area and moment of
inertia.

Fig. 2 describes the stressed and unstressed shape of the rim support for
the particular geometry of the deployable solar concentrator (Grossman and
Williams 1989): F = 3.186 m, b = 4.57 m, B = 40°. M* and F7 for this
geometry are umquely determined from the load analysis (Grossman 1991)
(note that i = I/Ab” is very small). A typical value of pb*/EI = 1.384 has
been selected. This value is based on the inflation pressure and dimensions
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FIG. 2. Stressed and Unstressed Shape of Rim Support for DSCE Geometry, for
Typical Value of Rigidity Parameter (pb'/EI) = 1.384

calculated for the 9 X 7-m reflector, and on the properties of polyurethane
foam—one candidate material for a rigidized rim support. The integration
of Eqgs. 30 and 31 leading to these resuits has been performed numerically.

Fig. 2 shows the maximum x- and y-deviations between the stressed and
unstressed rim. It is clear that with the present foam, the deviation is quite
significant. A more rigid rim support with a higher value of pb*/EI would
give smaller deviations. It is evident that the unstressed shape is closer to
circular than the stressed. The applied moments tend to reduce the radius of
curvature at the major axis and increase it at the minor axis. This had already
been observed when the moment distribution was calculated (Grossman 1991).

Fig. 3 describes the variation of the maximum deformations in the x- and
y-directions, u at the minor axis, and v at the major axis, respectively, with
the rigidity parameter pb*/EI. The results were calculated for the deployable
solar concentrator (DSCE) geometry and for i = 0. It is evident that both
deformations increase with pb*/EI. A simplified formula may be derived for
the case where pb*/EIE is very small, leading to very small deformations.
Substituting (b — &) = 2, sin (b — ¢) = ¢ — ¢, ¢ = 1 in Egs. 30a and
b yields

74

044 --mmmmmmm -

P
'.*

NORMALIZED DEFORMATION

FIG. 3. Normalized Maximum Deformations in x- and y-Directions (u/b and v/b,
Respectively) as Functions of Rigidity Parameter (pb*/EI), for Deployable Solar
Concentrator Geometry and i = 0

pb*
du=1(W—d)sind +i = Frcosdldl...........ooooiiit (32a)
pb*
dv = [—(q; — d)cos b + i(—E7>F’T‘ sin (b]dll ...................... (32b)

The term § — ¢ may in turn be obtained from Eq. 31b

pb* [ cos B

-b=—— ——————— iFf + M*]dl ................. (33)
VT T [(1 — i sin?p)? :
Note that the integral in Eq. 33 is independent of the rigidity and depends
only on the geometry of the rim support. Thus, both du and dv in Eqs. 32a
and b are proportional to pb*/EI. In particular, for the case of i << 1 the

bending moments dominate:

b4 yi/b
du = I—)E (—sin ) M*dlz>dll ................................ (34a)

b4 /b
dv = pEI- (cos ) M*dlz>dll ................................. (34b)
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CONCLUSION

p = inflation pressure (N/m’);
R = radius of curvature of rim (m);

A deformation analysis has been performed for the rim support of an off- u = deformation in x-direction, Eq. 26 (m);
axis paraboloidal membrane, such as the deployable solar concentrator. The v = deformation in y-direction, Eq. 26 (m);
function of the rim support is to take up the tensile forces created by the x = rim coordinate along minor axis (m);
stretched membrane. The deformations result from the loads applied by the y = rim coordinate along major axis (m);
membrane on the rim support (predominantly bending and compression) that B = angle of inclination of off-axis rim, (rad);
have been calculated in a companion paper (Grossman 1991). € = strain; ]

The analysis gives the deformations in the x- and y-directions (# and v, A = length increment over neutra! line, Fig. 1 (m);
respectively) at all points along the rim. The deformations are shown to ¢ = distance from neutral line, Fig. 1 (m);
depend on the rim geometry, the applied loads, and a rigidity parameter pb*/ o = stress; ) )

EI. When deformations are small, they are approximately proportional to ¢ = slope angle of stressed rim (radians); and
Pbs/ El. ¢ = slope angle of unstressed rim (radians).
Subscripts
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1 = stressed rim; and
The writer greatly appreciates the support provided for this project by J. 2 = variable of integration.

Naujokas, C. Ford, and presently K. Laug of the Air Force Astronautics

Laboratory. This study was conducted under USAF/AFAL contract FO4611-
86-C-0112.

APPENDIX |. REFERENCES

Grossman, G. (1991). “Analysis of rim supports of off-axis inflatable reflectors. I:
Loads.” J. Aerospace Engrg., ASCE, 4(1), 47—66 .
Grossman, G., and Williams, G. (1989). “Inflatable concentrators for solar propul-

sion and dynamic space power.” Proc. ASME Int. Solar Energy Conf., American
Society of Mechanical Engineers, 39—45.

Popov, E. P. (1976). Mechanics of materials. Prentice Hall, Englewood Cliffs, N.J.,
355-357.

ApPENDIX Il. NOTATION

The following symbols are used in this paper:

= cross-section area (m?);

= half of major axis of elliptical rim (m);

= dimensionless compression parameter, Eq. 15b;
= modulus of elasticity (N/m?);

focal length of on-axis, parent paraboloid (m);
F/b (dimensionless);

compression/tension force in rim, (N);
Fr/pb*;

moment of inertia of cross section (m®);

= I/Ab%

= arc length along rim, Fig. 1 (m);

= integral moment, (N-m);

= M/pb’,

[ T
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TENSION ELEMENT TO REDUCE LoADS IN Rim
SUPPORT OF INFLATABLE REFLECTOR

By Gershon Grossman'

ABSTRACT: A structural analysis is performed for the rim support of a pressurized
off-axis paraboloidal membrane that serves as a space-based solar concentrator.
The function of the elliptical rim support is to take up the tensile forces created
by the stretched membrane. This paper extends earlier load and deformation anal-
yses to include the effect of a tension element added along the major axis of the
ellipse. Such an element, in the form of a string or cable, restrains the tendency
for increased ovality of the rim support under load without seriously interfering
with the packaging and deployment of the device, at negligible added mass. The
internal forces and moments and the deformations resulting from the membrane-
applied loads have been calculated. The analysis has shown that a properly designed
tension element can reduce the maximum bending moment by more than a factor
of 2. The deformations are reduced by more than a factor of 20.

INTRODUCTION

Inflatable structures employing thin, pressurized membranes for use in
space have received growing attention in the past few years in view of their
many potential applications. Among those, perhaps the most important ones
are solar concentrators and space antennas. In both applications, the mem-
brane must assume a geometrical shape of considerable accuracy. The de-
signer is faced with the task of supporting the membrane at the rim against
sizable forces. The rim support must have not only the strength to carry the
load imposed by the inflation pressure, but also the rigidity to resist defor-
mation and allow the membrane to maintain its accurate shape.

Two earlier studies (Grossman 1991) have considered the loads and de-
formations created in the rim support of an off-axis inflatable paraboloidal
membrane, such as the one for the Deployable Solar Concentrator (Gross-
man and Williams 1989, 1990; Williams 1987). The forces transmitted by
the stretched membrane to the rim support create in the latter internal shear
and compression forces as well as sizable bending moments, due to the
nonsymmetrical pattern and compression forces as well as sizable bending
moments, due to the nonsymmetrical pattern of the membrane forces. These
loads result in a deformation of the rim support, which may be deleterious
to the accuracy of the paraboloid if not taken into consideration properly.
The load analysis (Grossman, 1991) showed the membrane forces to be on
the order of (pb), the internal forces on the order of (pb?), and the moments
on the order of (pb?®), where p is the inflation pressure; and b is half the
major axis of the elliptical rim. The deformation analysis (Grossman 1991)
showed that when deformations are small, they are on the order of (pb5/
EI), where E is the modulus of elasticity of the rim support material, and
I is the moment of inertia of its cross section. The pattern of deformation

'Prof., Fac. of Mech. Engrg., Technion—Israel Inst. of Technol., Haifa 3200,
Israel.
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is toward an increase in the ovality of the ellipse; that is, the major axis
tends to elongate and the minor axis tends to become shorter.

The purpose of the present study has been to investigate the possibility
of reducing both loads and deformation by adding a tension-resisting ele-
ment such as high-modulus cable along the major axis of the ellipse. As is
shown, such an element would act against the deformation tendency of the
rim support. A compression-resisting spoke along the minor axis would have
a similar effect, but is not desirable for practical reasons: it would be con-
siderably heavier, having to resist buckling, and harder to package.

INTERNAL FORCES AND MOMENTS

The first step in the earlier load analysis (Grossman 1991) was to calculate
the membrane forces transmitted to the rim support. The same forces T,
and T, in the x- and y-directions, respectively, are in effect under the present
conditions. Their distribution along the elliptical rim, as calculated in the
earlier load analysis (Grossman 1991), is illustrated in Fig. 1 for the geometry
of the Deployable Solar Concentrator (Grossman and Williams 1989, 1990):

F = 3.186 m; b = 4.57 m; B = 40° (1a,b,c)

The rim loading is clearly symmetrical with respect to the y-axis; T, is

(Ty)max=*156pb;

(Tx)mox= I-4lpb
ey=0-42

FIG. 1. Distribution along Rim of Membrane-Applied Tensile Forces in x- and
y-Directions (Grossman 1991)
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shown in the right part of Fig. 1 and 7, in the left; however, it is clear that
each point on the rim has both 7, and T, acting on it in their respective
directions.

Fig. 2(a) shows the elliptical rim support with the tension element along
the major axis, applying a tension force P = k8 when the membrane is
inflated; & is the elastic elongation of the cable with respect to its unloaded
length, and k is its spring constant. To calculate the internal forces and
moments we employ a free-body method, in which the rim support is cut
and a portion of it, subject to internal loading, is studied. As in the earlier
load analysis (Grossman 1991), we take advantage of the symmetry with
respect to the y-axis and make the first cut along this axis, as illustrated in
Fig. 2(b). The reactions at the two cut ends are marked by F,, M, at the
low end and Fy,, M,, at the high end. Symmetry allows only internal forces
normal to the cross section, that is in the x-direction, and bending moments,
as shown. Also shown are the forces P/2 applied by the tension element at
each end. Force balances on the right half of the rim support in the x- and
y-directions yield

+b
EPX:FL+F,,+f  Todl =0 ()
e -
+b P P
EPy—fy?bTdeE—E_o (3)
A moment balance about the low-cut end gives
+b +b
2M=ML+M,,—2bF,,+f beydl—f L0+ DT dl =0
y=- y=-
4)
Fy
M Fe
FL

(c)

FIG. 2. Internal Forces and Moments in Rim Support: (a) Force Applied by Tension
Element; (b) Cut along Axis of Symmetry; (c) Loads Applied to Rim Element
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Eq. (3) does not provide any new information, since the terms with P2
cancel out. It merely provides a check on T,, which was calculated in the
earlier load analysis (Grossman 1991), to confirm that y tensile forces on
the rim are balanced. We thus have two equations, (2) and (4), for the five
unknowns (F,, Fy, M;, My, and P). The problem is clearly statically in-
determinate.

Additional information on this type of problem must be obtained from
an analysis of the deformations. In this particular example, due to the
symmetry with respect to the y-axis, it is required that the horizontal de-
fiections as well as the angular deformations at the cut ends be zero; the
vertical deflections of the cut ends are 3 = P/k, inward. We employ Cas-
tigliano’s second theorem (Marin and Sauer 1954) which makes use of the
strain energy U, calculated in terms of the unknown reactions. To obtain
the three additional equations required to solve the present problem, we
express U in terms of M,, F,, and P, and require that

UM, = 0 )
aU/IF, = 0 (6)
aUIOP = — Plk %)

The total strain energy contains terms associated with tension/compres-
sion, shear and bending of the rim support. To calculate it, we must find
the normal and tangential forces and the bending moments at each cross
section. To this end, we cut the right half of the rim support further, at an
arbitrary point, as shown in Fig. 2(c). Internal forces F,, F, and a bending
moment M, act at the cut end, as shown. A force balance in the x- and
y-directions and a sum of moments about the low-cut end give three equa-
tions, for F,, F,, and M, in terms of the three still unknown reactions F,,
M,,and P

y

}‘,szFL+Fx+f

y=-

[ T.dl=0 (8)

P y
ZPy=5+Fy+L T,dl =0 )

=—b

y
ZM:ML+M—(y+b)F,+xFy—f L+ DT dl
e

y
+ L_be, dl =0 (10)

It is convenient to normalize the forces and moments, and introduce the
following dimensionless equivalents:

T* = T/(pb); T* = T,/(pb)

P* = Pi(pb?) an
Ft = F/(pb®; F} = F,/(pb®); Fi = F /((pb?); F}; = Ful(pb®)

M* = MI(pb®); M} = M /(pb®); M} = Myl(pb®)

Substituting the internal forces and moments in (8)—(10) we can solve for
the internal forces and moments
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Y1

Fi(y) = —Ff - |_ T:Kdy, (12)
P* Y1
Fy(y) = -5 - | | TKdy, (13)

Y1
M) = ~ME -~ (1+ yFi — U+ y) | TiK ay,
Y1 P*
+ V1 — y%cos[?»f_1 T;K dy, + V1 - y%cos[37

i Y1
+ L (1 + y)T?K dy, — cos BL VI = yiTiK dy, (14)

where y, = y/b; and y, = a variable of integration; K = a scale factor for
the arc element d/ in terms of y and the angle of inclination g (Grossman

1991), defined by
[1 — y?sin’B
K= [—2>P
I i (13)

From F, and F, we may calculate the shear forces (normal to the ellipse)
and the tension/compression forces (tangential to the ellipse), Fs and F,
respectively, at each cross section, as follows:

Fr

F,siny — F, cos vy (16a)
Fg = F,cosy + F,sinvy (16b)

where v = local slope angle of the elliptical rim, as illustrated in Fig. 2(a).
In normalized form

F% = Fl(pb®);  F% = Fyl(pb?) (17a,b)

With Fs, F, and M known at points along the rim, the total strain energy
may be found from the formula (Popov 1976)

M:? F2 2
Uzgg( +—L+ﬁ)d1 (18)

2EI 2FA 2GA

where the three terms from left to right represent energy associated with
bending, tension/compression, and shear, respectively. Here E and G =
moduli of elasticity and shear, respectively, of the rim support material; A
= cross section area; I = moment of inertia (for bending) of the cross
section; s = a dimensionless factor expressing the fact that the shear stresses
are not uniformly distributed over the cross section area, and its value
depends on the shape of the cross section. As shown earlier in the load
analysis of a rim support without a tension element (Grossman 1991), the
shear forces are considerably smaller than the tension/compression forces
for typical off-axis geometries; they vanish completely in the rim support
of an on-axis membrane.

Eq. (18) may be rewritten in a dimensionless form, by substituting the
normalized quantities as follows:
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p2b7 +1
U= f (M2 4 iFP & JFE)K dy, (19)

where / and j = dimensionless parameters

1

i=—5 (20)
. El
/=5 Gap @)

and are generally much smaller than unity.
F7and F{in (18) are functions of the still unknown Ffand P*; M*isa
function of P*, F}, and M. Substitution in (5)-(7) yields

+1 aM*
* =
f_l M s Kdvi=0 22)
1 M*  aF% aF%
M* S 4 iFr STy iy Kdy, =0 2
f_l ( aF; { TaF,=5 JEs 6F}f> Y1 (23)
+ oM* aF%  _ aF: EI
M* +iFE L S kg = P* (24
f-l ( ap* T gps T saP*> N (2ka) (24)

Using (16) and (17) to express F%, F¥in terms of F¥, F; and calculating the
derivatives from (12)-(14), we find

OM*oM} = —1;dM*/oFF = —(1 + y,); IM*/aP*

= (12)V1 — y?cos B )
25
OFF/0F] = cos y; OF¥/9FF = —sin vy
0F7/9P* = —(1/2)sin y F}/0P* = —(1/2)cos vy
and hence (22)-(24) become
+1
f_l M*Kdy, =0 (26)

+1
f [+ y)M* ~ icos yF} + jsin yF)K dy, = 0 (27)

f? [V1 =y cos BM* — isin yF} — j cos yF2]K dy, + (%) P*=0
(28)

Note that sin v, cos vy in the preceding are functions of y, (Grossman 1991)
\/bz—yzz\/l—y%
ycos f3 ¥y, cos B

tany = (29)

Let us define
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Y1 y
Hiy) = VT=3icosp [ Tikay — 1+ y) [ T2k,
N
[ 00+ T - VT T cos 8TrK dy 30)
yi
Hy(y) = (i cosy + jsinty) [ T2K ay,
Y1
+ (j — i)sin 'ycosyf ) TYK dy, (31)
y
Hy(y,) = (j cos®>y + i sin’y) f .1 TrK dy,

Y1
+ (j — i)sin y cos yf [ TiK dy,  (32)

Then, substitution from (14) in (26) yields
+1 +1
mif Ky re [ ok an

P* +1 +1
— & cos Bf_l V1 — yiK dy, = Ll H\K dy, (33a)

Note that in part of the terms in (33a), the integrand is antisymmetrical
with respect to y, = 0, which makes the integral from yi= —1ltoy, =
+1 vanish. Hence, (33a) may be rewritten in a simplified form
+1 pP* +1 +1
(M:’S+F1’f)J1 Kdy1—76083]1 Vl—nyd)h:f | HiK dy,
(33b)
Substitution from (12)-(14) and (16) into (27) gives

+1 +1
M,*jf 1 (1 + y)Kdy, + F{f 1 [(1 + y,)? + icosy + j sin?y]K dy,

P* +1 i . .
- 7] L+ y)VT — yicos B — (j — i)sin vy cos y]K dy,

= [" 1+ yom, - mik @, (34a)

-1

which may be simplified by eliminating vanishing integrals to give

+1

+1
M,"_‘f 1 K dy, + F,’f[ 1 [(1 + y,)* + icos’y + jsin?y]K dy,

* +1 +1
- Loss [ VT = [ 10 - b, - Bk Gy, o)

Finally, substitution from (12)-(14) and (16) into (28) yields
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+1
M} cosﬂ»f_l V1 - yiK dy,

+1
+ F f_l [+ y)V1 — ytcos B — (j — i)sin +y cos y]K dy,

- p* E — P—* le [(1 = yYcos?B + isin®>y + jcos>y]K dy,
kb>) ~ 2 ) '

-1
= J ) [H; + HV1 — y? cos B]K dy, (35a)
or, in simplified form

+1
(M} + Ff)cos B f VI = 7K dy,

P* +1 P*
- 7[ [(1 = y?)cos?B + isin*y + jcos*y]K dy, —
-1

ki

+1

= I (H; + HiV1 — y? cos B)K dy, (35b)
—1

where
kb?
= — 36
b= g (36)

Egs. (33b), (34b), and (35b), provided by Castigliano’s second theorem
for this statically indeterminate problem, may be solved for F}, M}, and
P*, once the integrals are evaluated. We notice that the integrals contain
the membrane loads T}, T, geometrical parameters of the off-axis parab-
oloid and rim support, and the cross section parameters, i, j—all given or
known from earlier calculations. Also included is the dimensionless param-
eter k, [(36)], which represents the stiffness ratio between the tension ele-
ment and the rim support. Once the low end reactions Fj, M} are found,
we can calculate F7;, M} from the equilibrium equations (2) and (4), and
the entire force and moment distribution from (12)-(14). This completes
the problem, since now all the internal forces and moments are given through
the expressions already developed, linking them to the low-end reactions.

DEFORMATIONS

A deformation analysis (Grossman 1991) was performed for the off-axis
rim support without a tension element. Considering the geometry of the
rim support cross section and the elastic properties of its material, the
deformations were calculated at all points along the rim based on the loads,
forces, and moments found earlier in the load analysis (Grossman 1991).
The approach has been to require an accurate elliptical shape for the stressed
rim and calculate the corresponding unstressed shape. More specifically,
the x- and y-components of the deviation between the unstressed and stressed
rim (¥ and v, respectively) have been expressed in terms of the above
parameters. In the notation of the present paper, the relation is as follows:
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- : ¢+¢ : "‘_d’ _’iz *
du~|:25m( > )sm(—2 )+(EA)FTcos¢

1 — y?sin?B dy
-y ¢ 37

+ - 2
dv = [—2 cos (_‘132_¢> sin (41_2_2) + <’;—§) F% sin cb]
1 — y%sin?B dy
=R 3
-yt ¢ (38)
where
F b?
c:1+E§=1+(g—A>F¢ (39)
and

7 cos B pb*\ M* 1 — y3 sin’B dy,
+ ¢ = —_— (1 + — == ) = Lz R 2
vxé f—l [(1 — y3 sin?B)*? (1+0) (EI ¢ 1 -3 ¢

(40)

The same deformation analysis may be applied to the present case, with
a tension element. However, the loads M* and F% in (37)-(40) must be
replaced by those calculated under the present conditions, (14) and (17),
with proper consideration for the effect of the string force P. The procedure
for doing so has been incorporated in a computer code that calculates loads
and deformations in the off-axis rim support.

RESULTS AND COMMENT

The computer code, described in the earlier load and deformation anal-
yses (Grossman 1991), has been modified to include the option of a tension
element along the major axis of the elliptical rim. The code calculates
numerically the elliptical integrals contained in the mathematical results of
the foregoing analysis and evaluates the loads and deformations at user-
specified points along the rim. To use the code for a case with a tension
element, the user must specify a nonzero value of the parameter k, = (kb%/
ET), (36). As an example for the discussion, calculations were carried out
for the geometry of the Deployable Solar Concentrator (Grossman and
Williams 1989, 1990), with the parameters given in (1). We have assumed
i = j = 0, a good assumption for most practical cases.

Grossman (1991) showed that the dominant factor in the strength re-
quirements for an off-axis rim support are the bending moments. Fig. 3
shows the distribution of the moments along the rim for two cases: on the
left is the distribution for the case without a tension element; on the right
are the moments of the same rim support with an added tension element
of relative stiffness k, = 1,000. It is evident from Fig. 3 that the tension
element contributes to a major reduction in the moments all over the rim.
The maximum moment is reduced from 0.2111pb* to 0.0927pb>. Under the
given conditions, the location of the maximum moment changes from the
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FIG. 3. Distribution along Rim of Internal Moments with and without Tension
Element

top to the bottom of the ellipse. Without a tension element, the moment
reverses direction twice, tending to increase the ovality of the ellipse. The
tension element attempts to fix the distance along the major axis, thereby
causing the moment to change direction four times, as shown.

The effectiveness of the tension element in reducing the moments depends
on its stiffness relative to that of the rim support. Fig. 4 shows the dimen-
sionless bending moments (dashed lines), as functions of k; = (kb*EI) at
three points along the rim: M} at (0, —b), M§ at (b cos B, 0), and Mj; at
(0, +b). Also shown is the dimensionless tension force (solid line) P* =
(P/pb?) in the element. It is evident that all three moments decrease in
absolute magnitude and the element force increases as the relative rigidity
increases. At about k, = 10, M}, and M} reverse direction due to the
effect explained earlier. At about k, = 1,000, all threg moments approach
an asymptotic value. It seems desirable to select a design point at k, values
greater than 1,000, where the sensitivity to k, is minimal.
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FIG. 4. Dimensionless Bending Moments and Tension Force as Functions of Ten-
sion Element Stiffness

How can such element stiffness be achieved? For the Deployable Solar
Concentrator (Grossman and Williams 1989, 1990), a 1-m diameter, 9 X
7-m inflatable torus made of 0.007 in. (1.8 X 10~* m) thick neoprene-coated
woven Kevlar fabric has been designed; the material modulus of elasticity
is E = 500,000 psi (3.4 x 10% kPa), and the cross-sectional moment of
inertia is I = 176 in.* (7.07 x 107 m*). To obtain k, = 1,000 with b =
180 in. (4.57 m) the spring constant for the tension element must be 15,000
Ibf/in. (2.7 X 10° N/m). This may be achieved with a 0.6-mm diameter
woven Keviar string of 19,000,000 psi (1.3 x 10® kPa) modulus.

The tension element is effective in reducing not only the loads but also
the deformations. Fig. 5 describes the stressed shape (solid line) and the
unstressed shape (broken line) of the rim support for the Deployable Solar
Concentrator (Grossman and Williams 1989, 1990) geometry. The defor-
mation in Fig. 5 is not to scale and has been exaggerated for better illus-
tration. Assuming the point (0, —b) to be common for the stressed and
unstressed rim, the drawing shows the maximum y deformation (v,,,,) at
the (0, +b) location and the maximum x deformation (u,,) at the (b cos
B, 0) location. For the 9 X 7 m, 40 in. diameter inflatable torus, the
deformation-governing rigidity parameter (Grossman 1991), ( pb*EI) is ap-
proximately 0.03. With this value and without a tension element the cal-
culations show u.,,, = 0.0017b and v,,,, = 0.0025b. Adding a tension ele-
ment with relative stiffness k, = 1,000 reduces both those deformations to
below 0.00015.

CONCLUSION

Earlier load and deformation analyses by Grossman (1991) of an off-axis
rim support were extended to include the effect of a tension element added
along the major axis of the ellipse. Such an element, in the form of a string
or cable, restrains the tendency for increased ovality of the rim support
under load without seriously interfering with the packaging and deployment
of the device, at negligible added mass. The analysis has shown that a
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FIG. 5. Stressed and Unstressed Shape of Rim Support with Tension Element for
Geometry of Deployable Solar Concentrator (Grossman and Williams 1989, 1990)

properly designed tension element can reduce the maximum bending mo-
ment by more than a factor of 2 for the Deployable Solar Concentrator
(Grossman and Williams 1989, 1990) geometry. The deformations are re-
duced by more than a factor of 20. To achieve asymptotic reduction of loads,
the stiffness of the tension element relative to that of the rim support, as
expressed by the dimensionless parameter k, = (pb* EI), must exceed 1,000.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

A = cross-section area (m?);
b = half major axis of elliptical rim (m);
¢ = dimensionless parameter, (39);
E = modulus of elasticity (N/m?);
F = focal length of on-axis, parent paraboloid (m);
Fy = compression/tension force at high-cut end of rim, Fig. 2 (N);
F}, = Fyl/pb* (dimensionless);
F, = compression/tension force at low-cut end of rim, Fig. 2 (N);

F} = F,/pb* (dimensionless);

Fg = shear force in rim (N);

F¢ = Fg/pb* (dimensionless);

Fy = compression/tension force in rim (N);
F} = F;/pb® (dimensionless);

F, = internal force in x-direction, Fig. 2 (N);

+ = F./pb® (dimensionless);
N internal force in y-direction, Fig. 2 (N);
F} = F,/pb* (dimensionless);

~
I

G = shear modulus (N/m?);
H, = dimensionless parameter, (30);
H, = dimensionless parameter, (31);
H, = dimensionless parameter, (32);
I = moment of inertia of cross section (m*);
i = I/Ab? (dimensionless);
j = SEIGAb? (dimensionless);
K = dimensionless parameter, (15);
k = spring constant of tensions element (N/m);
k, = relative stiffness of tension element (kb*/ EI) (dimensionless);
! = arc length along rim (m);
M = internal moment, Fig. 2 (N-m);
M* = M/pb® (dimensionless);
M,, = internal moment at high-cut end of rim, Fig. 2, (N-m);
M} = M,/pb® (dimensionless);
M, = internal moment at low-cut end of rim, Fig. 2 (N-m);
M} = M,/pb® (dimensionless);
P = tension force in tension element (N);
P* = dimensionless force in tension element (P/pb?) (dimensionless);
p = inflation pressure (N/m?);
s = factor in (18), expressing the nonuniform distribution of shear stresses
over cross section (dimensionless);
T, = tensile force exerted by membrane on rim support in the x-direction

(N/m);
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T,/pb (dimensionless);

tensile force exerted by membrane on rim support in y-direction
(N/m);

T,/pb (dimensionless);

strain energy, (18) (J);

deformation in x-direction (m);

deformation in y-direction (m);

rim coordinate along minor axis (m);

rim coordinate along major axis (m);

y/b (dimensionless);

variable of integration for y, (dimensionless);
angle of inclination of the off-axis rim (rad);
slope angle of elliptical rim, (29) (rad);
elongation of tension element (m);
dimensionless parameter, (40); and
dimensionless parameter, (40).
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