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Estimation of Vehicle Dynamic and Static Parameters
from Magnetometer Data

John F. Kinkel* and Mitchell Thorn&
L’Garde, Inc., Tustin, Calijbmia 927804487

A method of estimating the spin rate, coning rate, and coning half-angle of a spinning space vehicle using the
data from a single-axis magnetometer mounted transversely to the spin axis of the vehicle is described. In addition,
estimates are available for the angle between the total angular momentum vector of the vehicle and the local
magnetic field vector. The ratio of the spin axis to transverse axes moments of inertia may also be calculated.
Estimates for several other parameters, including the local magnetic field intensity, are available. An example is
given for a magnetometer mounted in a laboratory fixture to provide spin and coning motion. Finally, the use of
the data to obtain absolute pointing information is illustrated, including an error analysis.

Introduction

F OR low-budget space experiments we desire to provide as much
data as possible regarding the dynamics of a spinning vehicle

while satisfying severe constraints on the size, weight, power, and
cost of the instrumentation package. As demonstrated in this paper,
a single-axis magnetometer mounted transversely to the spin axis of
the vehicle provides a great deal of information when the data are
appropriately processed. Although the technique has been demon-
strated to work for real data (a sample problem is included here),
the existence of a unique solution has not been proven.

Deduction of Dynamics Parameters
We show how the magnetometer data will provide estimates for

several parameters describing the vehicle dynamics. The basic ap-
proach is to formulate a parameter estimation problem based on a
mathematical model (the estimation model) representing the mo-
tion of the vehicle-mounted magnetometer. The parameter set in
the estimation model includes several parameters of interest in the
space experiment, e.g., the vehicle spin rate, coning rate, coning
half-angle, and other parameters to be described. Loosely speaking,
the problem is to determine the model parameter set that minimizes
(in some sense) the difference (distance) between the model mag-
netometer data stream and the actual magnetometer data stream. A
nonlinear programming algorithm is used to perform the required
minimization. The details of the problem formulation and solution
are described in the sequel.

Estimation Problem
There is a strong connection between estimation and approxima-

tion. For our present purposes we prefer to use the approximation
problem formulation described by Rice.l

After a flight of the magnetometer, we are given a data sequence
f(Q. Wedeviseanestimationmodel F(a, Qincorporatingavector
a whose elements comprise the set of parameters to be estimated.
The problem is to find the optimal estimate for cx that minimizes the
distance between f(Q and F(a, tj). Thus, where

f Cti) = measurement data sequence
F(o!, tj) = estimation model data sequence

a! = model parameter vector
the optimal estimation problem can be summarized as

where
p ( l ) = distance function2v3

&Z optimal estimate for parameter vector
To make use of this basic problem formulation, it is necessary to

do the following.
1) Define the estimation model F (a, tj) and associated parameter

vector a.
2) Define the distance function p.
3) Provide a means of solving the minimization problem.
The next section defines the estimation model.
For convenience, we use a least-squares solution.1-4 We define

We may apply a nonlinear programming algorithm to solve the min-
imization problem.s-g

Estimation Model
We assume that the vehicle is symmetrical about the spin axis,

which we designate as the z axis; i.e., we assume that ZX = 1~ and
IXY = Ixz = ZYZ = 0, where the I designates the moments of inertia
indicated by the subscripts.

Using the notation of HugheslO we may write the output of the
magnetometer as the dot product of the magnetometer sensitivity
vector and the local magnetic intensity vector, namely,

F. =ueh w

where
F. = magnetometer output

= magnetometer sensitivity vector
E = local magnetic field vector, G

We will use a standard set of Euler angles to define the geometry.
A body-fixed set of axes is used on the spinning object with the z
axis being the axis of symmetry. The magnetometer is mounted so
that its sensitive axis is parallel to the x axis of the body-mounted
coordinates. To evaluate Eq. (4) we transform the magnetometer
sensitivity vector (K, 0, 0) in the body-fixed coordinates, to an
inertial system. K is the sensitivity coefficient for the magnetometer.

We choose an inertial system with its z axis oriented along the
constant direction of the vehicle’s angular momentum, and with
the Earth’s magnetic field vector in its X-Z plane. The conver-
sion of the magnetometer sensitivity vector to the inertial system
using the Euler angles is described by HugheslO and Thomson!
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The transformation is a series of three rotations as in the following
matrix:

[::;$ ;; !]

[

cos 0J) sin ep
X -sin ep COSTS

0 0

where

es = spin angle
Y = coning half-angle

ep = precession angle

0 *

0

1 1

The dc offset of magnetometer:

Note that this analysis assumes that the magnetic field is constant
over the trajectory interval examined. If the field cannot be con-
sidered constant, additional variables should appear in Eq. (5). For
flight vehicles we have examined, the approximation appears to be
valid, but other investigators are cautioned to consider its validity
for their particular case.

Solving the Miiimization Problem
Minimizing z(a) m. (2)] with respect to a using the model

F(cx, ti) m. (7)] obtains the optimal solution to the estimation
problem [Eq. (3)]. Thus, the problem can be stated as

We can write the magnetic field vector as

h = H(sin @, 0, cos p) (9
The nonlinear programming algorithm selected here to solve

this minimization problem is the Davidon-Fletcher-Powell (DFP)
algorithm.5*g~12 Although no one nonlinear programming has been
developed that will solve all problems, the DFP algorithm has been
found to be very effective in a wide class of problems13 and is gen-
erally recognized as being among the very best available, if not the
best. The specific algorithmic code used is as described by Press
et all4

The DFP algorithm requires the gradient vector

where
B = the angle between the vehicle total angular momentum

vector and the local magnetic field vector
H = magnitude of local magnetic field vector
In terms of the preceding definitions, Eq. (4) becomes

F0 = K H (cos & cos y cos & sin p + cos & cos B sin y

- sin 0$ sin ep sin /Y) (6)

To obtain the final
write the following:

desired form of the magnetometer

using the expression for z from Eq. (2), we find

Substituting these expressions in the equationfor FO
following result for the magnetometer estimationmodel:

F(a, ti) = A(cos(2~f~ti + 4s) COS(Y) CoS(znfpti + #p) sin@)

From the expression for F(a, ti) given in Eq. (7) and the accom-
panying definition of CY, we find the following expressions for the
partial derivatives:

+ cos(2JrhQ + &J co@) sin(y)

- Sin(2xfsti + &) Sin(2nfpti  + t#+J sin(p)) + V0 (7)

where CY = (A /A y, 5, h fp, #p, VA- Thus, the p-eter set
consists of eight elements as follows.

Magnetometer output amplitude coefficient:
+ COs(2ntrti  + &) CO@) sin(y)

Qfl = A
- Sin(ZH&ti + A) SWZfpti + tj$J sin(p)] WI

5 = A(coS(2~f~ti + #s) COS()‘)  COS@Jt’fpti + @p) COS(p)

I

Angle between vehicle total angular momentum vector and local
magnetic field vector:

a2 B
- COS@nfsti + &) sin@) sin(y)

- SW2nfsti + &) Sin(2Zfpti  + &) COS(jY)} (12)

5 = A(-cOs@n&ti + &) sin(y) cos(Znfpti + &.J sin(b)

+ COS@nfsti + 43) COS(lQ COS(y)} (13

$ = 4-sW2~fsti + &) cos(y)  cos(znfpti + &J SKI@)
.v

- W2Xfsti + #s) Co@) sin(y)

Vehicle coning half-angle:

a3 = Y

Vehicle spin rate relative to body-fixed coordinate system:

Qf4 = &

Vehicle spin phaseangle
sample block timezero:

body-fixed coordinate system
at

- COS(2nfsti + &) Sin(2nfpti + $bp) SiIl(/3))2YUi

aF

(14)

- = A(-sin(2nfsti + &) COS(Y) coS(2nfpti + &,) sin@)
a#%

Precession rate (coning rate) relative to inertial space:

a6= fp

Precession
time zero:

phase angle relative to inertial space at block
- Sin(2nf$ti + &J CO@) sin(y)

- cos(2Jrfiti + #$) sin(2Xfpti + &J sin@)) (1%w = #+I
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!E = A{-cos(2Xfsti  + &) COS@) sin(2nfPti + &P) sin(p)
afP
- SiIl(2Hfsti + $I&) COS(2Hfpti + C#p) Sil@)}2Hti uw

aF
- = A(mCos(2n_&ti + &) COS(~) sin(%f*ti  + #@sin(@)
ah

- sin(2XfSQ + (#Q) COs(2Hfp?i + &) sin@} (17)

The minimization algorithm selected will find only a local mini-
mum; therefore, reasonable initial conditions for the state (parame-
ter) vector must be provided. If these are not carefully selected, the
algorithm may find some local minimum far from the desired one.
Examination of a plot of the magnetometer output vs time provides
initial values for al, a4, as, a(j, ~7, and as.

The initial estimate for ~3 = y = vehicle coning half-angle can
be determined from Eqs. (12), (15), and (30) in Hughes”:

where

i.e., R is the ratio of pitch to roll moments of inertia for the vehicle.
The ratio of pitch to roll moments of inertia is assumed known,

at least approximately. The initial estimates for fs and fp are used
in Eq. (19).

This leaves only ~2 = B to be assigned an initial value. Compar-
ing the appearance of plots of F(cx, ti) vs time will aid the selection
of an initial value of a~.

Given the initial values as described, the algorithm will provide an
optimal estimate & corresponding to the local minimum discovered.

An estimate is also available for the value of R, the ratio of pitch
to roll moments of inertia, computed from the elements of & and
Eq. (19); i.e.,

*

The value of i found by Eq. (21) should be reasonably close to
the vehicle design value.

A check on the credibility of the estimate & is the standard devi-
ation for the estimate, which is

The signal-to-noise ratio (SNR) can be written as

SNR = 2Olog(fi/cr) dB WI
The SNR should be approximately the same as the design value for
the magnetometer system.

An SNR resulting from a large value of 0 indicates with high
probability that an erroneous local minimum has been found and
that more accurate initial values are required for the algorithm to
converge to the desired minimum.

Example
Figure 1 shows a real magnetometer output (dotted values) from a

laboratory fixture, which simulates spin and precession. The fixture
was such that the equivalent total angular momentum vector was
approximately vertical and the equivalent coning half-angle was
about ~r/4 rad. A plot of the magnetometer output is shown in Fig. 1.
Examination of the figure indicates that the values for spin rate and
precession rate are about 0.5 and 0.0813 Hz. Because the coning
half-angle y was known to be about ~r/4 rad, the design value of
R is found from Eq. (20) to be 8.7. The dip, or inclination of the
Earth’s magnetic field from the horizontal in the Tustin area where
the test were concluded, is about 60 deg downward.15* l6 Therefore,

ed

Time (set)

a) InitiaLguess at matching experimental data

- 0 IO 20 30 40 50

Time (set)

b) Match to data after optimization

Fig. 1 Experimental demonstration of parameter optimization.

the angle b between the total angular momentum vector and the
local magnetic intensity vector was about 150 deg or 2.618 rad.

The equations presented in the preceding sections were solved nu-
merically. The operation of the computer program was checked by
creating a fictitious magnetometer data file based on the model pre-
viously described. Without additive noise the residual total square
error z(b) was very small and & was the same as the fictitious model
parameters, indicating convergence of the algorithm. With additive
noise in the magnetometer model data sequence, the SNR found
by Eq. (23) was in good agreement with the known value. Because
the fictitious data stream was generated by the estimation model,
the tests just described check only the operation of the nonlinear
programming algorithm, not the validity of the estimation model.
The validity of the estimation model will be checked using real data
from the magnetometer test ftxture previously described.

For determining the initial estimate of the unknown parameters,
we used a spreadsheet program. The magnetometer output, Eq. (7),
was calculated for a priori estimates of the parameters. Direct com-
parison of the graphs of the actual data vs time to the calculated data
allowed selection of the proper initial values by inspection. Figure
1 a shows the result of this estimation for our laboratory model and is
typical of the kind of agreement possible. The coning and spin fre-
quencies are estimated first to get proper frequencies into the data.
Then the phases are adjusted to get the proper shapes. This method
could be automated, but for analysis of flight data after the fact that
is not necessary.

Applying the estimation algorithm to the actual magnetometer
data gave the results shown in Table 1. A plot of the magnetome-
ter estimation model outputs are shown for the optimal parameter
vector & in Fig. lb. Figure 1 b shows that the optimal parameter
vector estimate B produces an estimation model output that closely
matches the real magnetometer output. The validity of the estimation
model is thus verified, at least qualitatively. Quantitative validation
is evident from the SNR shown in Table 1 for the optimal estimate.
The table shows SNR = 28.6 dB as compared to the known value
of about 30 dB for the magnetometer.
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Table 1 Magnetometer model parameter estimation

Parameter Initial Estimated

spin rate, EIZ
Pitch/roll inertia ratio
Prece&on rate, Hz
Coning ha&angle, rad
SNR, dB
Spin phase angle, rad
tision phase angle, rad
Peak signal, V
DC offset, V
Magnetic field angle, rad
Number of samples: 1100 at 55 Hz

o.mo
8.5000 9.45 12

0.4905

0.0813 0.0772
0.7619 0.8332

30.0000 28.5660
3.9270 4.1693
o.OOoO 0.2059
3.0000 2.9305
1.0000 0.9171
2.6180 2.5825

Deduction of Absolute Pointing Direction
A three-axis magnetometer has been used to obtain accurate

pointing information for an intercontinental ballistic missile (ICBM)
distance launch on the Inflatable Exoatmospheric Object (LEO)
programr7 in 1972. More recently, highly accurate orientations were
obtained on the Firefly sounding rocket launch in 1989. For Fire-
fly, the uncertainty in orientation inherent with these devices was
eliminated through the use of a sun sensor also, which provided
a positioning pulse once during each spin cycle. As shown sub-
sequently, similar information can be obtained with a single-axis
magnetometer without the use of any additional inputs, relying on
the variation of the Earth’s magnetic field along the fright path. A
similar approach was previously used for IEO data reduction for a
three-axis magnetometer. l7 The details of this earlier approach by
Massachusetts Institute of Technology, Lincoln Laboratory, person-
nel was never published in the open literature. The approach used
here is similar but more comprehensively quantifies the resulting
error.

As already shown, a single-axis magnetometer can be used to
obtain the angle between the payload’s angular momentum vector
and the Earth’s magnetic field by modeling the motion over a part
of the trajectory. The result is that the payload’s angular momentum
vector is known to lie on a cone around the EUh’s magnetic field
vector.

At a later point in the trajectory, the direction of the Earth’s mag-
netic field has changed, and if the payload:s angular momentum
vector is cons&r& the result will be a cone of uncertainty different
from that found at the earlier point. This is shown in Fig. 2. The
intersection of the two cones of uncertainty must contain the actual
payload anguIar momentum vector. Thus, the cone of uncertainty
has been reduced to a pair of possible orientation vectors. However,
if the calculation is repeated for a third point along the trajectory, a
third cone of uncertainty results that must also contain the payload
angular momentum vector. When this cone is used together with
the one from the earlier point a new pair of possible payload ori-
entations is found. However, only one of this new pair will match
one vector of the pair of vectors found from the first two trajectory
points. This matching vector must be the actual payload angular
momentum vector.

The case of a payload with a constant angular momentum over
large portions of its trajectory is a common and usual situation.
Furthermore, the analysis shows that the deduction of #$ the angle
between the payload’s angular momentum vector and the Earth’s
magnetic field, is feasible by matching trajectory parameters over a
lo-s portion of the flight. Because suborbital trajectories of interest
range from about 500 s in duration for short sounding rocket flights,
to 2400 s for ICBM flights, the opportunity exists to apply the cone-
ofuncertainty analysis earlier highlighted to many points along the
trajectory. Although only three points are theoretically needed, as
already shown, many points will be useful to mitigate the effect of
measurement errors on the analysis.

The purpose of this part of the paper is to show that the analysis
highlighted can be used for realistic trajectories in the presence of
measurement errors of the parameter beta. We show that there are
conditions where the method wiIl be of marginal usage, but many
cases exist where absolute pointing data can be found from analysis
of the single-axis magnetometer.

ns

Fig. 2 Intersections of the
cones of uncertainty contain
the target orientation.

Mle 2 Deduced cosines for 1% l-v error in p

5214  trajectory
Launch latitude and longitude = (28ON, 80°W)
Impact latitude and longitude = (27.4 deg, 79.9)

Actual using 10 points using 50 points

& 0.5774 0.439 1 3.8%a
MY 0.5774 0.542 3.5
K 0.5774 0.654 7.7

aRcsulting I%! error relative to unit vector.

0.519 5.8%
0.569 0.8
0.595 1.8

Analysis AppNJach
We assume that the trajectory parameters (altitude vs time) and

the direction of the Earth’s magnetic field are known accurately. The
effect we are investigating is the impact of the measurement error
in p. To determine this effect over a range of typical conditions, we
model the ballistic trajectory as given by the equation

1
’ = C+Acos(+&)

(24)

where A and C are constants of the trajectory, r is the distance from
the Earth’s center, and 3 is the polar angle. The model of the Earth’s
magnetic field is that of a dipole, whose axis of symmetry is tilted
from that of the Earth by the spherical polar angles & = 11.5 deg
and &?I = -69 deg. Defining A as the complement of @ (the polar
angle in the spherical coordinate system of the Earth’s field), it is the
latitude of the magnetosphere. The direction of the magnetic field
dipole moment is then given by

-c
B (1 +3sin2A)#

B- (1 + 3 sin2 A)4

This simple model allows the magnetic field direction along typical
trajectories of interest to be easily estimated. The Appendix shows
the derivation of the pointing direction given the cones of uncertainty
for two different points along a trajectory. When this procedure is
applied to data where the value of /I defming the cones is known
accurately, the actual payload pointing direction is obtained from
the first three points along any trajectory. For the analysis reported,
the values of /I were assigned random errors along the trajectory,
and the ability to again deduce the pointing direction of the payload
was studied.

To aid in deduction of pointing, we had to smooth the resulting
inaccurate B values by curve fitting with a curve of order 1,2, or 3
(in general, order 2 worked best). This has the effect of averaging
out much of the error introduced by the random errors in p.

For example, Fig. 3 shows a typical trajectory run during this anal-
ysis. Figure 4 shows the resulting B values for a particular pointing
vector of the payload (direction cosines all equal). The figure also
shows a resulting set of /? assigned a random 1% error, and the
second-order cume fit to these data.

Parametric Analysis
The following paragraphs present the results of the study.

Effect of Number of Intervals Used in the Calchtions
Table 2 shows the effect of increasing the number of points calcu-

lated along a trajectory from 10 to SO. See the Appendix for defini-
tion of&Z. The improvement in accuracy results from the additional
averaging obtained by using more data points. For short trajectories,
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Table 3 Deduced direction cosines for 1% 1-0 error in p; 10 points used on each trajectory

Flight time Flight time Flight time Flight time
521 s 635 s 850 s 1949 s

from (28’, 80’) from (28O, 80’) from (28’, 80’) fkom (28O, 80’)
Actlld to (27.4’, 79.9’) to (25.8’, 74.7’) to (18.9’, 53.1’) to (15.8’, 44.S”)

Mr 0.5774 0.439 13.8% 0.552 2.5% 0.576 0.1% 0.575 0.2%
MY 0.5774 0.542 3.5 0.562 1.5 0.570 0.7 0.567 1.0
nG 0.5774 0.654 7.7 0.611 3.4 0.586 0.9 0.588 1.1

Table 4 meet of measurement error on deduced direction cosines

Tmjectory time 1949 s; fkom (28ON, 8O’W) to (15.8’N, 44.5’W)
10 traiectorY Doints used

Actual With 1% error With 5% error With 10% error

Mx 0.5774 0.575 0.2% 0.578 0.1% 0.581 0.4%
MY 0.5774 0.567 1.0 0.545 3.2 0.518 5.9
Mz 0.5774 0.588 1.1 0.605 2.8 0.625 4.8

Table 5 Muted direction co&es for different orientations

Tmjectory time 521 s f?om (28’N, 80°W) to (27.4ON, 79.9’W) 1% l-u error in /?, IO trajectory points used
Actual DedUCed ActUd D&Cd Actual D&Cd Actual D&Cd

MY 0 -0.026 2.6% 0.7071 0.712 0.5% 0.707 1 0.422= 0.707 1 0.709 0.2%
MY 0.7071 0.698 0.9 0 0.001 0.1 0.7071 0.460 0.7071 0.697 1.0
Mz 0.7071 0.650 5.7 0.7071 0.702 0.5 0 0.332 0.0705 0.092 2.1

aAverages of deduced vector are meaningless because of positive to negative switches (resulting kom average of 0.7,0.7, -0.7, etc.).

1000

200

0
0 100 200 300 400 500 600

Time (set)

Fig. 3 Nominal trajectory (launch v = 7480 fps, launch azimuth = 75
deg fkom horizontal, launch latitude and longitude = 28ON, 80°W).

it may not be possible to use a sufficiently large number of points to
get reasonable accuracy unless the spin and precession rates of the
payload are sufficiently high to allow it.

Effect of Trajectory Length
One might expect that with a longer trajectory, the magnetic field

direction will vary more, and the analysis will be less sensitive to
errors in B (p will vary more strongly the more the magnetic field
varies). Our calculations show that indeed this is correct. Table 3
presents deduced orientations as a function of the total time of the
trajectory (from launch to impact), and the trend toward increasing
accuracy with trajectory time is apparent, although for long times
an asymptote is approached.

Eflect of Magnitude of u
For a long trajectory, it appears that the error in the deduced

pointing direction is of the same order as the error in /S. This is

0.55

0.54

0.53
=
:

l G 0.52
S

0.51

0.50

0.49
0 100 zoo 300 400 500

Time (set)

Fii. 4 Three methods of d&ning p, for nominaI trajectory.

shown in Table 4, which shows the variation in u from 1 to 10% for
an ICBM trajectory. For shorter trajectories, or those using fewer
points, the trend is the same, but the errors are greater than CL

Effect of Vehick Orientation
Table 5 shows that the analysis gives similar results if the angular

momentum vector lies in either the xz or yz planes. If the orientation
is in the my plane, however, the effect of error in #J can cause a
switch in the deduced pointing vectors from positive to negative
for some trajectory points. Thus, there remains an uncertainty for
cases where the payload direction has no z component. However, if
a small z component is introduced at a level about 10% of the x or
y components, this ambiguity is removed.

Conclusions
What is believed to be a novel technique for obtaining dynamic

data from a spinning spacecraft using only very simple onboard
equipment has been demonstrated. Using only a relatively low-
accuracy single-axis magnetometer we obtain reasonably accurate
estimates for the vehicle spin rate,coning rate, coning half-angle,
ratio of pitch to roll moments of inertia, angle between total angular
momentum vector and local magnetic field intensity, and the magni-
tude of the local magnetic field intensity. The estimates are achieved
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using a nonlinear programming solution of an optimal estimation
problem formulation.

By processing the magnetometer data in successive blocks of a
few hundred data points, it should be possible to obtain a sequence
of estimates for time varying parameters. It should be necessary
to manually initialize the estimation process only for the first data
block because the remaining blocks can utilize the optimal estimate
from the preceding block as the initial parameter vector.

Deduction of the absolute orientation of a spinning payload by
using a single-axis magnetometer is feasible for a large variety of
trajectories and orientations. To obtain reasonable accuracy 50 or
more points along the trajectory should be analyzed. The longer
the trajectory, the more accurate the magnetometer supplied data
becomes.

Appendix: Deduction of Direction
of Angular Momentum V&or

Let angular momentum have fixed orientation given by the unit
vector

M =  Mxi+MYj+Mzi

Let magnetic field direction at some point along flight path be
given by the unit vector

f = f~h-fyj+j,$
Both unit vectors are defined in terms of a nonrotating Cartesian

coordinate system with the z axis parallel to the Earth’s spin axis,
located at the payload position.

Let the half-angles of the two cones of uncertainty be /?I and h
(see Fig. 2).

Let the general unit vector lying on the cone of uncertainty be
given by

r&+yj+&, where x2+y2+z2= 1 (Al)

(procedure suggested by Kevin Davey, L’Garde, Inc.). We then know
that

r*f = co@1 = xfxl + Yfyl + Zfzl

Similarly, for the next trajectory point

cm I32 = Kfi2 + Yfy2 +zfz2

Then from Eqs. (A2) and (A3)

x Z cash - Yfyl -2fzl Z cosP2 - Yfy2 -zfz2
fxl fx2

or

A-By-Cz=D-Ey-Fz

where

cos PlAZ- f f
f

9 &L, C=A

xl fxl fxl

D
cos p2 f fz-
f

9
x2

E+ Fzf
x2 x2

Therefore,

(B - E)y = (F - C)z + (A - D)

y=Gz+H

where

G = (F - C)/(B - E)

Also from Eqs. (A&A6)

and H = (A - D)/(B - E)

or

x=A-B(Gz-+H)-Cz (Am

where

J= -BG-C a n d K=A-BH

Substituting Eqs. (A6) and (A7) into Eq. (Al),

J2z2 + 2JKz + K2 + G2z2 + 2GHz -I- H2 -I- z2 = 1

or

(J2+G2+l)z2+(2JK+2GH)z+(K2+H2-1) 0  (A8)

The two possible solutions of EZq. (A8) produce the two lines of
intersections between two cones. One of these values of r is equal
to the angular momentum vector M.

Ideally, a new set of points will give a different solution since
f will change. However, one of the new solutions should equal
one from the previous set of solutions because the solutions again
contain M, which is assumed to be constant.

In the presence of measurement errors, the new solution will not
precisely match a previous one, but the set of solutions that from
point to point is least variable is most likely to be, on average, M.

References
%e, J. R., 7Ie Appmximation of Functions, Vol. 1, Addison-Wesley,

Reading, MA, 1964, pp. 2-7.
2Royden,  H. L., Real AnaZysis, Macmillan, New York, 1963, pp. 97,109.

111,157,158.
3Kolmogorov,  A. N., and Fomin, S. V., Elements ofthe Theory of Func-

tions and Functional Analysis, Vol. 1, Graylock, Rochester, NY, 1957, pp. 16
ff, 71 ff.

‘Porter, W. A., Modem Foundations of Systems Engineering, Macmillan,
New York, 1966, pp. 46-50.

sGue, R. L., and Thomas, M. E., Mathematical Methods in Operations
Research, Macmillan, New York, 1968, pp. 117-125.

‘Hadley, G., Nonlinear and Dynamic Progmmming, Addison-Wesley,
Reading, MA, 1964.

‘Mangasarian, 0. L., Nonlinear Programming, McGraw-Hill, New York,
1969.

*Zangwill, W. I., NonZinear P~gramming, Prentice-Hall, Englewood
Cliffs, NJ, 1969.

gPolak, E., Computational A4ethods in Optimization, Academic, New
York, 1971, pp. 566.

loHughes, P C., Spacecrafl Attitude mnamics, wl~y, New York, 1986,
pp. 96-103.

“Thomson, W. T., Introduction to Space Dynamics, Dover, New York,
1986, pp. 33-37.

12Davidon,  W. C., “Variable Metric Method for Minimization,” SIm
Journal on Optimization, Vol. 1, No. 1, 1991, pp. 1-17.

13Colville,  “A Comparative Study on Nonlinear Programming Codes,”
IBM New York Scientic Rept. 320-2949, June 1968.

14Press, W. H., Flannery, B. P, Teukolsky, S. A., and Vetterling, W. T.,
Numerical Recipes: Die Art of Scienti!c Programming, Cambridge Univ.
Press, New York, 1986.

“Hodgman, C. D. (ed.), H&ook of Chemistry and Physics, 44th ed.,
Chemical Rubber Publishing, 1963, p. 2762.

16Merrill, R. T., and McElhinney, M. W., 27ze Earth’s Magnetic FieZd:
Its History, Origin, and Planetary Perspective, Academic, New York, 1983,
p. 19, Fig. 2.2(b).

“McPhie, J. M., “IEO Fiial Flight Test Report,” Massachusetts Inst. of
Technology, Lincoln Lab. Project Rept. PA 356, Cambridge, MA, Oct. 1975.



L66Garde6Inc
151816Woodlawn6Avenue
Tustin,6CA692780-6487
www.LGarde.com


