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Estimation of Vehicle Dynamic and Static Parameters
from Magnetometer Data

John F. Kinkel* and Mitchell Thomas'
L’Garde, Inc., Tustin, California 927804487

A method of estimating the spin rate, coning rate, and coning half-angle of a spinning space vehicle using the
data from a single-axis magnetometer mounted transver sely to the spin axis of the vehicleis described. In addition,
estimates are available for the angle between the total angular momentum vector of the vehicle and the local
magnetic field vector. The ratio of the spin axis to transver se axes moments of inertia may also be calculated.
Estimates for several other parameters, including the local magnetic field intensity, are available. An example is
given for a magnetometer mounted in a laboratory fixture to provide spin and coning motion. Finally, the use of
the data to obtain absolute pointing information isillustrated, including an error analysis.

Introduction

OR low-budget space experiments we desire to provide as much

data as possible regarding the dynamics of a spinning vehicle
while satisfying severe constraints on the size, weight, power, and
cost of the instrumentation package. As demonstrated in this paper,
a single-axis magnetometer mounted transversely to the spin axis of
the vehicle provides a great deal of information when the data are
appropriately processed. Although the technique has been demon-
strated to work for real data (a sample problem is included here),
the existence of a unique solution has not been proven.

Deduction of Dynamics Parameters

We show how the magnetometer data will provide estimates for
several parameters describing the vehicle dynamics. The basic ap-
proach is to formulate a parameter estimation problem based on a
mathematical model (the estimation model) representing the mo-
tion of the vehicle-mounted magnetometer. The parameter set in
the estimation model includes severa parameters of interest in the
space experiment, e.g., the vehicle spin rate, coning rate, coning
half-angle, and other parameters to be described. Loosely speaking,
the problem is to determine the model parameter set that minimizes
(in some sense) the difference (distance) between the model mag-
netometer data stream and the actual magnetometer data stream. A
nonlinear programming algorithm is used to perform the required
minimization. The details of the problem formulation and solution
are described in the sequel.

Estimation Problem

There is a strong connection between estimation and approxima:
tion. For our present purposes we prefer to use the approximation
problem formulation described byRice.!

After a flight of the magnetometer, we are given a data sequence
f{t:). Wedeviseanestimationmodel F(ex, Qincorporatingavector
a whose elements comprise the set of parameters to be estimated.
The problem is to find the optimal estimate fog that minimizes the
distance between f(t;) and F(e, ). Thus, where

f (&)= measurement data sequence
F(a, t;)= estimation model data sequence
d = model parameter vector
the optimal estimation problem can be summarized as

pLF (&, 1) — f)] < p[F(a. ;) = f ()] @
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where

p (1) = distance function®*

& = optimal estimate for parameter vector

To make use of this basic problem formulation, it is necessary to
do the following.

1) Define the estimation model F (a, #;) and associated parameter
vector a,

2) Define the distance functionp.

3) Provide a means of solving the minimization problem.

The next section defines the estimation model.

For convenience, we use a least-squaressolution.!* We define

2a)= ) [Fla,t)— f@)P @
i=1
Then, the optimal estimate for « is defined by
(&) < (@) 3

We may apply a nonlinear programming algorithm to solve the min-
imization problem.5-°

Estimation Model

We assume that the vehicle is symmetrical about the spin axis,
which we designate as thez axis, i.e., we assume thaily = Iy and
Ixy =Ixz =Iyz = 0, where the | designates the moments of inertia
indicated by the subscripts.

Using the notation ofHughes'® we may write the output ofthe
magnetometer as the dot product of the magnetometer sensitivity
vector and the local magnetic intensity vector, namely,

F,=u-h (C)]

where

F, = magnetometer output
u = magnetometer sensitivity vector
h= loca magnetic field vector, G

We will use a standard set of Euler angles to define the geometry.
A body-fixed set of axes is used on the spinning object with the
axis being the axis of symmetry. The magnetometer is mounted so
that its sensitive axis is parallel to thex axis of the body-mounted
coordinates. To evauate Eq. (4) we transform the magnetometer
sengitivity vector (K, 0, 0) in the body-fixed coordinates, to an
inertial system. K is the sensitivity coefficient for the magnetometer.

We choose an inertial system with itz axis oriented along the
constant direction of the vehicle's angular momentum, and with
the Earth’s magnetic field vector in itx—z plane. The conver-
sion of the magnetometer sensitivity vector to the inertial system
using the Euler angles is described byHughes™ and Thomson!
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The transformation is a series of three rotations as in the following

matrix:

cosf; sing, O cosy O siny
—siné, cosf, O 0 1 0
0 0o 1 —siny 0 cosy

cosd, sng, 0
X | -sin @, cos8, 0
0 0 1

where

6, = spin angle
y = coning haf-angle
8, = precession angle
We can write the magnetic field vector as

h=H(sin g, 0, cosp) ®

where

B = the angle between the vehicle total angular momentum

vector and the local magnetic field vector
H= magnitude of local magnetic field vector

In terms of the preceding definitions, Eq. (4) becomes
F,=K H (cos§; cosy cos8, sinf + cosé, cosp siny
- sing, sing, sinp) )]

Toobtain the final desired form of themagnetometer output we
write the following:

A=KH =2 fit; + ¢ Op=2n foti+ ¢,

Substituting these expressions in the equationfor Fp gives the
following result for the magnetometer estimatiomodel:

F(a, ;) = A{cos2rfst;+ @) cos(y)cos(2m [t + ¢p) sin(B)
+ cos(2m fit; + ¢5) cos(B) sin(y)
=sin@2n fot; + @) sin@r fpt; + ;) sin(B)} + V, ™
wherea = (A, B, v, fi» s. fo &, Vo). Thus, the parameter set
consists of eight elements as follows.
Magnetometer output amplitude coefficient:
o) = A

Angle between vehicle total angular momentum vector and local
magnetic field vector:

o=

Vehicle coning haf-angle:
a=Y

Vehicle spin rate relative to body-fixed coordinate system:
o =

Vehicle spin phaseangle relative to body-fixed coordinatesystem
at sample block timezero:

as = ¢
Precession rate (coning rate) relative to inertial space:
o= fp

Precession phase anglerelativeto inertial space atsample block
time zero:

a7=¢p

The dc offset of magnetometer:
ag=V,

Note that this analysis assumes that the magnetic field is constant
over the trajectory interval examined. If the field cannot be con-
sidered constant, additional variables should appear in Eq. (5). For
flight vehicles we have examined, the approximation appears to be
vaid, but other investigators are cautioned to consider its vaidity
for their particular case.

Solving the Minimization Problem

Minimizing z{ex) [Eq. (2)] with respect toex using the model
F(a, ) [Eq. (7)] obtains the optimal solution to the estimation
problem [Eq. (3)]. Thus, the problem can be stated as

z{e) = nlin z(e) ®

The nonlinear programming algorithm selected here to solve
this minimization problem is the Davidon-Fletcher-Powell (DFP)
agorithm39-22 Although no one nonlinear programming has been
developed that will solve al problems, the DFP algorithm has been
found to be very effective in a wide class oproblems' and is gen-
eraly recognized as heing among the very best available, if not the
beﬂ.l;l'he specific agorithmic code used is as described by Press
etal.

The DFP agorithm requires the gradient vector
LA I

(41 3(22 aag

Vaz(a) = [

using the expression forz from Eq. (2), we find

dF(a, ;) aF (o, 1)
ooy T dag

Vaz(@) = ) 2F(a,8) - f(t.-)][
i=1

10

From the expression forF(e, ) given inEq. (7) and the accom-
panying definition ofa, we find the following expressions for the
partial derivatives:

%; = {cos2n fst; + ¢;) cos(y) cos(2m fpt; + ) sin(B)

+cos(2n ft; + @) cos(B) sin(y)

- Sin@rft; + ¢,)sin@ufoti+ ) sin(B)} an
%g- = A{cosafst; + ¢5) cos(y) cos(27 fti + ) c0s(B)
—cosQ2nfiti+¢;) sin(B) sin(y)
—sinQa f;t; + ¢,) sin@n ft; + ¢,) cos(B)} 12)

aF
i A{=cosQnfet; + ¢;) SiN(y) cos@afyti+¢,) sin(B)

+ cosRufit; + ¢5) cos(B) cos(y)} (13)
Z—fp- = A{—sinQ@2n fst; + §;) cos(¥) cosQQa ft; + $) sin(B)

=sinQn fs1;+ ;) cos(B) sin(y)
— cosQnfiti + ¢,) sin@u fot; + ¢,) sin(B)}2s; (14

g;i = A{~SINQAft + ;) cos(y) cos@ s + ) sin(B)

= sinQn f.; + ¢,) cos(B) sin(y)
— cosQm f4; + @) sin fot; + ¢,) sin(B)} (15
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oF
afp

=sin@rfef; + @) cos(2nfpt; + @) sin(B))2ns;
oF

Y A{—cos27 f;t; + ;) cos(y) sin(2n fpt; + ¢,) sin(B)
i3

= A{—cosQ2mfet; + @) cos(y) sin(2xf,t; + @) sin(B)

(16)

= sin@2afot + ¢s) cos(2m fot; + &) sin(B)} an
aF
TA =1 (18)

The minimization algorithm selected will find only a local mini-
mum; therefore, reasonable initial conditions for the state (parame-
ter) vector must be provided. If these are not carefully selected, the
agorithm may find some loca minimum far from the desired one.
Examination of a plot of the magnetometer output vs time provides
initial values forey, o4, as, ag, e7, and ag.

Theinitial estimate fore; = ¥ = vehicle coning half-angle can
be determined from Egs(12), (15), and (30) inHughes:

S S
v =0 { R-1J, ] @
where
R=L/l,=1/], (20

i.e, Ristheratio of pitch to roll moments of inertia for the vehicle.

The ratio of pitch to roll moments of inertia is assumed known,
a least approximately. The initial estimates fof, and f, are used
in Eq. (19).

This leaves only a; = 8 to be assigned an initial value. Compar-
ing the appearance of plots of F(e, #) vstime will aid the selection
of an initial value ofay.

Given the initial values as described, the agorithm will provide an
optimal estimatea corresponding to the local minimum discovered.

An estimate is also available for the value dR, the ratio of pitch
to roll moments of inertia, computed from the elements &fand
Eq. (19); i.e,

R _:_f.t__T +1
fpcosy
The value of & found by Eq. (21) should be reasonably close to
the vehicle design value.

A check on the credibility of the estimaté is the standard devi-
ation for the estimate, which is

@n

o =2(&)/(n—-1) (22
The signal-to-noise ratio(SNR) can be written as
SNR = 20log(A/c) dB 23)

The SNR should be approximately the same as the design value for
the magnetometer system.

An SNR resulting from a large value ok indicates with high
probability that an erroneous local minimum has been found and
that more accurate initial values are required for the agorithm to
converge to the desired minimum.

Example

Figure 1 shows a real magnetometer output (dotted values) from a
laboratory fixture, which simulates spin and precession. The fixture
was such that the equivalent total angular momentum vector was
approximately vertica and the equivaent coning half-angle was
about =/4 rad. A plot of the magnetometer output is shown in Fig. 1.
Examination of the figure indicates that the values for spin rate and
precession rate are about 0.5 and 0.0813 Hz. Because the coning
half-angle y was known to be aboutr/4 rad, the design value of
Ris found from Eqg. (20) to be 8.7. The dip, or inclination of the
Earth’s magnetic field from the horizontal in the Tustin area where
the test were concluded, is about 60 degdownward.! 16 Therefore,
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Fig.1 Experimental demonstration of parameter optimization.

the angle 8 between the total angular momentum vector and the
local magnetic intensity vector was about 150 deg or 2.618 rad.

The equations presented in the preceding sections were solved nu-
merically. The operation of the computer program was checked by
creating a fictitious magnetometer data file based on the model pre-
viously described. Without additive noise the residua total square
error z(é&) was very small and & was the same as the fictitious model
parameters, indicating convergence of the algorithm. With additive
noise in the magnetometer model data sequence, the SNR found
by Eq. (23) was in good agreement with the known value. Because
the fictitious data stream was generated by the estimation model,
the tests just described check only the operation of the nonlinear
programming agorithm, not the validity of the estimation model.
The validity of the estimation model will be checked using real data
from the magnetometer test fixtore previously described.

For determining the initial estimate of the unknown parameters,
we used a spreadsheet program. The magnetometer output, E(7),
was calculated for a priori estimates of the parameters. Direct com-
parison of the graphs of the actual data vs time to the calculated data
allowed selection of the proper initia vaues by inspection. Figure
1 a shows the result of this estimation for our |aboratory model and is
typical of the kind of agreement possible. The coning and spin fre-
quencies are estimated first to get proper frequencies into the data.
Then the phases are adjusted to get the proper shapes. This method
could be automated, but for analysis of flight data after the fact that
iS not necessary.

Applying the estimation agorithm to the actua magnetometer
data gave the results shown in Table 1. A plot of the magnetome-
ter estimation model outputs are shown for the optimal parameter
vector & in Fig. Ib. Figure 1 b shows that the optimal parameter
vector estimate& produces an estimation model output that closely
matches the real magnetometer output. The validity of the estimation
model is thus verified, at least qualitatively. Quantitative validation
is evident from the SNR shown in Table 1 for the optimal estimate.
The table showsSNR = 28.6 dB as compared to the known value
of about 30dB for the magnetometer.
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Tablel Magnetometer model parameter estimation

Parameter Initial Estimated
Spin rate, Hz 0.5000 0.4905
Htch/roll inertia ratio 8.5000 94512
Precession rate, Hz 0.0813 0.0772
Conmg ha& angle rad 0.7619 0.8332
SNR, dB 30.0000 28.5660
Spin phase angle,rad 3.9270 4.1693
Precession aﬁuhase angle, rad 00000 0.2059
Peak sign 3.0000 2.9305
DC offﬂ \ 1.0000 0.9171
Magnetic field angle, rad 2.6180 2.5825

Number of samples: 1100 at 55 Hz

Deduction of Absolute Pointing Direction

A three-axis magnetometer has been used to obtain accurate
pointing information for anintercontinental ballistic missileICBM)
distance launch on the Inflatable Exoatmospheric Object (LEO)
program!” in 1972. More recently, highly accurate orientations were
obtained on the Firefly sounding rockeaunch in 1989. For Fire-
fly, theuncertainty in orientation inherent with these devices was
eliminated through the useof a sun sensor also, which provided
a positioning pulse once during each spin cycle. As shown sub-
sequently, similar information can be obtained with a single-axis
magnetometer without the use of any additiona inputs, relyingon
the variation of the Earth’s magnetic field along thflight path. A
similar approach was previously used forlEO data reduction for a
three-axis magnetometer."” The details of this earlier approach by
Massachusetts Ingtitute of Technology, Lincoln Laboratory, person-
nel was never published in the open literature. The approach used
here is similar but more comprehensively quantifies the resulting
error.

As aready shown, a single-axis magnetometer can be used to
obtain the angle between the payload's angular momentum vector
and the Earth’s magnetic field by modeling the motion over a part
of the trajectory. The result is that the payload’s angular momentum
vector is known to lie on a cone around théBarth’s magnetic field
vector.

At a later point in the trgectory, the direction of the Earth’s mag-
netic field has changed, and if thepayload’s angular momentum
vector isconstant, the result will be a cone of uncertainty different
from that found at the earlier point. This is shown in Fig. 2. The
intersection of the two cones of uncertainty must contain the actua
payload angular momentum vector. Thus, the cone of uncertainty
has been reduced to apair of possible orientation vectors. However,
if the calculation is repeated for a third point aong the trgjectory, a
third cone of uncertainty results that must also contain the payload
angular momentum vector. When this cone is used together with
the one from the earlier point a new pair of possible payload ori-
entations is found. However, only one of this new pair will match
one vector of the pair of vectors found from the first two trajectory
points. This matching vector must be the actual payload angular
momentum vector.

The case of a payload with a constant angular momentum over
large portions of its trgjectory is a common and usual situation.
Furthermore, the analysis shows that the deduction of, the angle
between the payload’'s angular momentum vector and the Earth’'s
magnetic field, is feasible by matching trajectory parameters over a
10-s portion of the flight. Because suborbital trgjectories of interest
range from about 500 s in duration for short sounding rocket flights,
to 2400 s for ICBM flights, the opportunity exists to apply thcone-
ofuncertainty analysis earlier highlighted to many points aong the
trgjectory. Although only three points are theoretically needed, as
aready shown, many points will be useful to mitigate the effect of
measurement errors on the analysis.

The purpose of this part of the paper is to show that the analysis
highlighted can be used for realistic trajectories in the presence of
measurement errors of the parameter beta. We show that there are
conditions where the methodwill be of marginal usage, but many
cases exist where absolute pointing data can be found from analysis
of the single-axis magnetometer.

Fig. 2 Intersections of the
cones of uncertainty contain
the target orientation.

Intersections

Table 2 Deduced cosinesfor 1% 1.e error in 8

521-s trajectory
Launch latitude and longitude= (28°N, 80°W)
Impact latitude and longitude = (27.4 deg, 79.9)

Actua usng 10 points  using %0 points
My 05774 0439  138%* 0519 58%
M, 05174 0542 35 0569 08
M, 05774 0654 .7 0595 18
*Reuliing |#] €rror relative to unitvector.
Analysis Approach

We assume that the trajectory parameters (atitude vs time) and
the direction of the Earth’s magnetic field are known accurately. The
effect we are investigating is the impact of the measurement error
in 8. To determine this effect over a range of typica conditions, we
model the ballistic trajectory as given by the equation

t
SC+Acos(v —v,)

where Aand C are constants of the trgjectoryy is the distance from
the Earth’s center, and ¢ is the polar angle. The model of the Earth’s
magnetic field is that of a dipole, whose axis of symmetry is tilted
from that of the Earth by the spherical polar angleé, = 11.5 deg
and ¢ = -69 deg. Definingh as the complement of@ (the polar
angle in the spherical coordinate system of the Earth's field), it is the
latitude of the magnetosphere. The direction of the magnetic field
dipole moment is then given by

24

B, —2sinA

P — @25)
B (1+3sin?a)}

Be - ~-COsA 26)

B (143sin?a)t

This simple model alows the magnetic field direction aong typica
trajectories of interest to be easily estimated. The Appendix shows
the derivation of the pointing direction given the cones of uncertainty
for two different points along a trgjectory. When this procedure is
applied to data where the value off defining the cones is known
accurately, the actual payload pointing direction is obtained from
the first three points along any trajectory. For the analysis reported,
the values of g were assigned random errors along the trajectory,
and the ahility to again deduce the pointingdirection of the payload
was studied.

To ad in deduction of pointing, we had to smooth the resulting
inaccurate g values by curve fitting with a curve of order, 2, or 3
(in general, order 2 worked best). This has the effect of averaging
out much of the error introduced by the random errors irg.

For example, Fig. 3 shows a typical trgjectory run during this ana-
ysis. Figure 4 shows the resultingg values for a particular pointing
vector of the payload (direction cosines al equal). The figure aso
shows a resulting set of g assigned a random 1% error, and the
second-order curve fit to these data.

Parametric Analysis
Thefollowing paragraphspresent the resultsof thestudy.

Effect of Number of Intervals Used in the Calculations

Table 2 shows the effect of increasing the number of points calcu-
lated along a trajectory from 10 to SO. See the Appendix for defini-
tion of M. The improvement in accuracy results from the additional
averaging obtained by using more data points. For short trajectories,
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Table 3 Deduced direction cosines for 1%l-a error in 8; 10 points used on each trajectory

115

Flight time Flighttime Flight time Flight time
521s 635s 850s 1949s
from (28°, 80°) from (28°, 80°) from (28°, 80°) from (28°, 80°)
Actual t0(27.4°, 79.9) t0(25.8°, 74.7) t0(18.9%,53.1')  to(15.8°,44.5%)
M, 0.5774 0.439 13.8% 0.552 2.5% 0.576 0.1% 0.575 0.2%
M, 0.5774 0.542 35 0.562 15 0.570 0.7 0.567 1.0
M, 0.5774 0.654 7.7 0.611 34 0.586 0.9 0.588 11
Table4 Effect of measurement error on deduced direction cosines
Trajectory time 1949 s; from (28°N, 80°W) to (15.8°N, 44.5°W)
10trajectory Doints used
Actual With 1% error With 5% error With 10% error
M, 0.5774 0.575 0.2% 0578 0.1% 0.581 0.4%
M, 05774 0.567 10 0545 3.2 0518 59
M, 0.5774 0.588 11 0.605 2.8 0.625 48

TableS Deduced direction co& es for different orientations
Trajectory time 521 s from (28°N, 80°W) t0 (27.4°N, 79.9°W) 1% l-o error in 8,10 trgjectory points used

Actual Deduced Actual Deduced Actua Deduced Actual Deduced
My 0 -0.026 2.6% 0.7071 0.712 0.5% 0.7071 0.4222 0.7071 0.709 0.2%
M y 0.7071 0.698 0.9 0 0.001 0.1 0.7071 0.460 0.7071 0.697 10
M, 0.7071 0.650 5.7 0.7071 0.702 05 0 0.332 0.0705 0.092 21

Averages of deduced vector are meaningless because of positive to negative switches (resultingrom average of 0.7,0.7,-0.7, €tc.).
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Fig.3 Nominaltrajectory (launchy= 7480 fps, launch azimuth = 75
deg frem horizontal, launch latitude and longitude 28°N, 80°W).

it may not be possibleto use a sufficiently large number of points to
get reasonable accuracy unless the spin and precession rates of the
payload are sufficiently high to allow it.

Effect of Trajectory Length

One might expect that with a longer trajectory, the magnetic field
direction will vary more, and the analysis will be less sensitive to
errors in g (B will vary more strongly the more the magnetic field
varies). Our caculations show that indeed this is correct. Table 3
presents deduced orientations as a function of the total time of the
trajectory (from launch to impact), and the trend toward increasing
accuracy with trajectory time is apparent, although for long times
an asymptote is approached.

Effect of Magnitude of & ] )
For along trajectory, it appears that the error in the deduced
pointing direction is of the same order as the error irf. Thisis

0.55
0.54 — Qctual cos g
° o data, with error

053}k »wmwa least square fit
@
o
% o0s2f
9
3

0.51

0.50 }

0.49

0 100 200 300 400 500
Time (sec)

Fig.4 Three methods of defining 8, for nominal tr aj ectory.

shown in Table 4, which shows the variation ing from 1 to 10% for
anICBM trajectory. For shorter trajectories, or those using fewer
points, the trend is the same, but the errors are greater thas.

Effect of Vehicle Orientation

Table3 shows that the analysis gives similar results if the angular
momentum vector lies in either thexz or yz planes. If the orientation
isin thexy plane, however, the effect of error irg can cause a
switch in the deduced pointing vectors from positive to negative
for some trajectory points. Thus, there remains an uncertainty for
cases where the payload direction has noz component. However, if
a small z component is introduced at a level about 10% of thex or
y components, this ambiguity is removed.

Conclusions

What is believed to be a novel technique for obtaining dynamic
data from a spinning spacecraft using only very simpbnboard
equipment has been demonstrated. Using only a relativeliow-
accuracy single-axis magnetometer we obtain reasonably accurate
estimates for the vehicle spireate, coning rate, coning half-angle,
ratio of pitch to roll moments of inertia, angle between total angular
momentum vector and local magnetic field intensity, and the magni-
tude of the local magnetic field intensity. The estimates are achieved
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using a nonlinear programming solution of an optimal estimation
problem formulation.

By processing the magnetometer data in successive blocks of a
few hundred data points, it should be possible to obtain a sequence
of estimates for time varying parameters. It should be necessary
to manually initialize the estimation process only for the first data
block because the remaining blocks can utilize the optimal estimate
from the preceding block as the initial parameter vector.

Deduction of the absolute orientation of a spinning payload by
using a single-axis magnetometer is feasible for a large variety of
trajectories and orientations. To obtain reasonable accuracys or
more points aong the trajectory should be analyzed. The longer
the trajectory, the more accurate the magnetometer supplied data
becomes.

Appendix: Deduction of Direction
of Angular Momentum Vector
Let angular momentum have fixed orientation given by the unit
vector

M= M.i+M,j+Mk

Let magnetic field direction at some point along flight path be
given by the unit vector

Both unit vectors are defined in terms of a nonrotating Cartesian
coordinate system with thez axis parallel to the Earth’s spin axis,
located at the payload position.

Let the half-angles of the two cones of uncertainty by and B
(see Fig. 2).

Let the genera unit vector lying on the cone of uncertainty be
given by

r=xi +yf +2zk, where x2 +y*+22=1 (Al
(procedure suggested by Kevin Davey, L'Garde, Inc.). We then know
that

r-f =cos = xfu+ Y+ zf, (A2)
Similarly, for the next trajectory point
cm ﬂz = xfﬂ + nyz +Zflz (A3)
Then fromEgs. (A2) and (A3)
5= cos i —yfy1 —zfu = cosfy = yfy2 —zfn (Ad)
L T2
or
A—By—Cz=D-Ey-Fz (A5
where
A=r‘ngﬂl, B=-J;y-1-, C=E
i £ 1
=h g2 gk
i fa fa
Therefore,
(B=E)y=(F=C)z+ (A= D)
or
y=Gz+H (A6)

where
G=(F=C)/(B-E)
Also from Egs. (A4-A6)

ad H=(A=-D)/(B-E)

x=A-B(Gz+H)-Cz (A7a)
or
x=Jz+K (ATb)
where
J=-BG-C and K=A-BH
Substituting Egs. (A6) and (A7) into Eq. (Al),
J2+2JKz+ K+ G*? +2GH+ H* + =11
or
(J*+G*+1D*+QJIK+2GH)z+(K*+H*—1) O (A8)

The two possible solutions ofEgq. (A8) produce the two lines of
intersections between two cones. One of these values ofr is equal
to the angular momentum vectorM.

[deally, a new set of points will give a different solution since
T will change. However, one of the new solutions should equal
one from the previous set of solutions because the solutions again
contain M, which is assumed to be constant.

In the presence of measurement errors, the new solution will not
precisely match a previous one, but the set of solutions that from
point to point is least variable is most likely to be, on averag#|.
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